Biochemical Genetics

, Volume 16, Issue 9–10, pp 971–985 | Cite as

Relationship between subunit size and number of rare electrophoretic alleles in human enzymes

  • Walter F. Eanes
  • Richard K. Koehn
Article

Abstract

Data from published sources were used to compare the numbers of different electrophoretic alleles of 29 monomeric and dimeric human enzymes to their respective subunit molecular weights. Only those human enzymes were considered for which the total sample sizes were in excess of 2000 individuals. Correlations between these two variables were determined within sample size ranges of 2000≤n≤3000 and 4000≤n≤5000 individuals, and separately by quaternary class. There was no statistically significant correlation observed for the smaller sample size range in monomers; however, the correlations for the larger sample size range in monomers and both ranges in dimers were significant. Since there is no relationship between subunit size and heterozygosity, the relationships are due primarily to the incidence of rare alleles. These findings demonstrate the effect of locus-specific mutation rates, expected as a consequence of variation of cistron sizes, and imply that other forces are responsible for the relative frequencies of common alleles at some of the loci.

Key words

rare electrophoretic variants human heterozygosity enzyme subunit sizes human enzymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altay, C., Say, B., and Tuncbilek, E. (1974). Frequency of red cell adenosine deaminase and 6-phosphogluconate dehydrogenase in a sample of the Turkish population. Hum. Hered. 24306.Google Scholar
  2. Ayala, F. J. (ed.) (1976). Molecular Evolution, Sinauer, Sunderland, Mass.Google Scholar
  3. Bajor, M. S. (1974). Red cell acid phosphatase polymorphism in Hungary. Hum. Hered. 24309.Google Scholar
  4. Beckman, G., and Christodoulou, C. (1974). Variants of soluble and mitochondrial malate dehydrogenase in Hawaii, Nigerian and Swedish populations. Hum. Hered. 24294.Google Scholar
  5. Beckman, G., and Pakarinen, A. (1973). Superoxide dismutase: A population study. Hum. Hered. 23346.Google Scholar
  6. Beckman, G., Beckman, L., and Täruvik, A. (1970). A rare subunit variant shared by five acid phosphatase isozymes from human leukocytes in a placentae. Hum. Hered. 2081.Google Scholar
  7. Beckman, L., and Beckman, G. (1967). Individual and organ-specific variations of human acid phosphatase. Biochem. Genet. 1145.Google Scholar
  8. Benerecetti-Santachiara, A. S., Beretta, M., and Pampiglione, S. (1975). Red cell glutamic-pyruvic transaminase polymorphism in a sample of the Italian population. A new variant allele: GPT 8. Hum. Hered. 25276.Google Scholar
  9. Benerecetti-Santachiara, A. S., Baur, E. W., Beretta, M., Rauzani, G., Morpurgo, G., Carter, N. D., Udine, B. O., Ranjit, S. K., and Modiano, G. (1976). A study of several genetic biochemical markers in Sherpas with description of some variant phenotypes. Hum. Hered. 26351.Google Scholar
  10. Benkman, H. G., and Goedde, H. W. (1972). Further studies on the polymorphism of soluble glutamic-pyruvic transaminase (GPT; E.C.: 2.6.1.2) in a population of Northern Germany. Hum. Hered. 22283.Google Scholar
  11. Bernstein, S. C., Throckmorton, L. H., and Hubby, J. L. (1973). Still more genetic variability in natural populations. Proc. Natl. Acad. Sci. 703928.Google Scholar
  12. Blake, N. M., and Omoto, K. (1975). Phosphoglucomutase types in the Asian-Pacific area: a critical review including new phenotypes. Ann. Hum. Genet. 38251.Google Scholar
  13. Blake, N. M., Kirk, R. L., McDermid, E. M., Omoto, K., and Ahuja, Y. R. (1971). The distribution of serum protein and enzyme group systems among North Indians. Hum. Hered. 21440.Google Scholar
  14. Blake, N. M., Omoto, K., Kirk, R. L., and Gajdusck, D. C. (1973). Variation in red cell enzyme groups among populations of the Western Caroline Islands, Micronesia. Am. J. Hum. Genet. 25413.Google Scholar
  15. Blake, N. M., Saha, N., McDermid, E. M., and Kirk, R. I. (1974). Additional variants of 6-phosphogluconate dehydrogenase. Humangenetik 21347.Google Scholar
  16. Brinkman, B., Hoppe, H. H., Henig, W., and Kopps, E. (1971). Red cell enzyme polymorphisms in a Northern German population: Gene frequencies and population genetics of the acid phosphatase (AP), phosphoglucomutase (PGM), adenylate kinase (AK), adenosine deaminase (ADA), and 6-phosphogluconate dehydrogenase (6PGD). Hum. Hered. 21278.Google Scholar
  17. Cameron, H. (1971). Adenylate kinase (AK) phenotypes in an Indian population sample. Hum. Hered. 21297.Google Scholar
  18. Camoens, H., Monn, E., and Berg, K. (1972). Genetic marker systems in arctic populations. III. Polymorphism of red cell adenosine deaminase (ADA) in Norwegian Lapps. Hum. Hered. 22561.Google Scholar
  19. Camoens, H., Monn, E., and Berg, K. (1973). Genetic marker systems in arctic populations. IV. Polymorphism of red cell acid phosphatase in Norwegian Lapps. Hum. Hered. 2369.Google Scholar
  20. Carter, N. D. (1972). Carbonic anahydrase II polymorphism in Africa. Hum. Hered. 22539.Google Scholar
  21. Carter, N. D., Tashian, R. E., Huntsman, R. G., and Sacker, L. (1972). Characterization of two variants of red cell carbonic anhydrase in the British population: CA Ie Portsmouth and CA Ie Hull. Am. J. Hum. Genet. 24330.Google Scholar
  22. Cartwright, R. A., Bethel, I. L., Hargreaves, H., Izatt, M., Jolly, J., Mitchell, R. J., Sawhney, K. S., Smith, M., Sunderland, E., and Teasdale, D. (1976). The red blood cell esterase D polymorphism in Europe and Asia. Hum. Genet. 33161.Google Scholar
  23. Chakraborty, R., Das, S. R., Roy, M., Mukherjee, B. N., and Das, S. K. (1975). The effect of parity on placental weight and birth weight: Interaction with placental alkaline phosphatase polymorphism. Ann. Hum. Biol. 22227.Google Scholar
  24. Chan, K. L. (1971). Human red cell adenylate kinase polymorphism in West Malaysian populations. Hum. Hered. 21173.Google Scholar
  25. Chen, S. H., and Giblett, E. R. (1971a). Polymorphism of soluble glutamic pyruvic transaminase: a new genetic marker in man. Science 173148.Google Scholar
  26. Chen, S. H., and Giblett, E. R. (1971b). Genetic variation of soluble glutamic oxalacetate transaminase in man. Am. J. Hum. Genet. 23419.Google Scholar
  27. Chen, S. H., and Giblett, E. R. (1972). Phosphoglycerate kinase: Additional variants and their geographic distribution. Am. J. Hum. Genet. 24229.Google Scholar
  28. Chen, S. H., Fossum, B. L. G., and Giblett, E. R. (1972a). Genetic variation of the soluble form of NADP-dependent isocitric dehydrogenase in man. Am. J. Hum. Genet. 24325.Google Scholar
  29. Chen, S., Giblett, E. R., Anderson, J. E., and Fossum, B. L. G. (1972b). Genetics of glutamic-pyruvic transaminase: its inheritance, common and rare variants, population distribution, and differences in catalytic activity. Ann. Hum. Genet. 35401.Google Scholar
  30. Chen, S. H., Anderson, J., Giblett, E. R., and Lewis, M. (1974). Phosphoglyceric acid mutase: Rare genetic variants and tissue distribution. Am. J. Hum. Genet. 2673.Google Scholar
  31. Das, S. R., Mukherjee, B. N., and Das, S. K. (1974). Caste variation in the distribution of placental alkaline phosphatase genes among Hindus of West Bengal. Ann. Hum. Biol. 165.Google Scholar
  32. Davidson, R. G., and Cortner, J. A. (1967). Mitochondrial malate dehydrogenase: A new genetic polymorphism in man. Science 1571569.Google Scholar
  33. Davidson, R. G., Cortner, J. A., Rattazzi, M. C., Ruddle, F. H., and Lubs, H. A. (1970). Genetic polymorphisms of human mitochondrial glutamic oxalacetate transaminase. Science 169391.Google Scholar
  34. Detter, J. C., Ways, P. O., Giblett, E. R., Baughan, M. A., Hopkinson, D. A., Povey, S., and Harris, H. (1968). Inherited variations in human phosphohexose isomerase. Ann. Hum. Genet. 31329.Google Scholar
  35. Donald, L. I. (1976). Placental enzyme polymorphisms in Canadian populations. I. Adenylate kinase and esterase D. Hum. Hered. 26234.Google Scholar
  36. Donald, L. J., and Robson, E. B. (1974). Rare variants of placental alkaline phosphatase. Ann. Hum. Genet. 37303.Google Scholar
  37. Duncan, I. W., Scott, E. M., and Wright, R. C. (1974). Gene frequencies of erythrocyte enzymes of Alaskan Eskimos and Athabaskan Indians. Am. J. Hum. Genet. 26244.Google Scholar
  38. Ebeli-Struijk, A. C., Wurzer-Figurelli, E. M., Ajnar, F., and Khan, P. M. (1976). The distribution of esterase D variants in different ethnic groups. Hum. Genet. 34299.Google Scholar
  39. Eriksson, A. W., Kirjarinta, M., Fellman, J., Eskola, M.-R., and Lehrmann, W. (1971a). Adenosine deaminase polymorphism in Finland (Swedes, Finns, Lapps), the Mari Republic (Cheremisses) and Greenland (Eskimos). Am. J. Hum. Genet. 23568.Google Scholar
  40. Eriksson, A. W., Kirjarinta, M., Lehtosala, T., Kajanoja, P., Lehrmann, W., Mourant, A. E., Tills, d., Singh, S., Benkman, H.-G., Hirth, L., and Goedde, H. W. (1971b). Red cell phosphoglucomutase polymorphism in Finland-Swedes, Finns, Finnish Lapps, Maris (Cheremisses) and Greenland Eskimos, and segregation studies of PGM1 types in Lapp families. Hum. Hered. 21140.Google Scholar
  41. Farhud, D. D., Ananthabrishana, R., Walter, H., and Loser, J. (1973). Electrophoretic investigation of some red cell enzymes in Iran. Hum. Hered. 23263.Google Scholar
  42. Fisher, R. A., Turner, B. M., Dorkin, H. L., and Harris, H. (1974). Studies on human erythrocyte inorganic pyrophosphatase. Ann. Hum. Genet. 37341.Google Scholar
  43. Fraser, G. R., Volkers, W. S., Bernini, L. F., Van Logherm, E., Meerakhan, P., and Nijenhuis, L. E. (1974). Gene frequencies in a Dutch population. Hum. Hered. 24435.Google Scholar
  44. Fuerst, P. A., Chakraborty, R., and Nei, M. (1977). Statistical studies on protein polymorphism in natural populations. I. Distribution of single locus heterozygosity. Genetics 86455.Google Scholar
  45. Geerdink, R. A., Bartstra, H. A., and Hopkinson, D. A. (1974). Phosphoglucomutase (PGM2) variants in Trio Indians from Surinam. Hum. Hered. 2440.Google Scholar
  46. Gillespie, J. H., and Kojima, K. (1968). The degree of polymorphism in enzymes involved in energy production compared to that in non-specific enzymes in two D. ananassae populations. Proc. Natl. Acad. Sci. 61582.Google Scholar
  47. Godber, M., Kopec, A. C., Mourant, A. E., Teesdale, R., Tills, D., Weiner, J. S., El-Neil, H., Wood, C. H., and Bailey, S. (1976). The blood groups, serum groups, red cell isoenzymes, and haemoglobins of the Sandawe and Nyaturn of Tanzania. Ann. Hum. Biol. 3463.Google Scholar
  48. Goedde, H. W., Benkman, H. G., Singh, S., Das, B. M., Chakravartti, M. R., Delbrück, H., and Flatz, G. (1972a). Genetic survey in the population of Assam. II. Serum protein and erythrocyte enzyme polymorphisms. Hum. Hered. 22331.Google Scholar
  49. Goedde, H. W., Hirth, L., Benkman, H. G., Pellicer, A., Pellicer, T., Stahn, M., and Singh, S. (1972b). Population genetic studies of red cell enzyme polymorphisms in four Spanish populations. Hum. Hered. 22553.Google Scholar
  50. Hackel, E., Hopkinson, D. A., and Harris, H. (1972). Population studies on mitochondrial glutamate-oxalacetate transaminase. An. Hum. Genet. 35491.Google Scholar
  51. Harris, H. (1966). Enzyme polymorphisms in man. Proc. Roy. Soc. London Ser. B 164298.Google Scholar
  52. Harris, H., Hopkinson, D. A., and Edwards, Y. H. (1977). Polymorphism and subunit structure of enzymes: A contribution to the neutralist-selectionist controversy. Proc. Natl. Acad. Sci. 74698.Google Scholar
  53. Hopkinson, D. A. (1970). The investigation of reactive sulphydryls in enzymes and their variants in starch gel electrophoresis: Studies on the human phosphohexose isomerase variant PHI 5-1. Ann. Hum. Genet. 3479.Google Scholar
  54. Hopkinson, D. A., Coppock, J. S., Mühlemann, M. F., and Edwards, Y. H. (1974). The detection and differentiation of the products of the human carbonic anhydrase loci CA 1 and CA 11, using flurogenic substances. Ann. Hum. Genet. 38155.Google Scholar
  55. Hopkinson, D. A., Edwards, Y. H., and Harris, H. (1976). The distribution of subunit numbers and subunit sizes of enzymes: A study of the products of 100 human gene loci. Ann. Hum. Genet. 39383.Google Scholar
  56. Jenkins, T., Harpending, H. C., Gordon, H., Keraan, M. M., and Honston, S. (1971). Red-cell enzyme polymorphisms in the Khoisan peoples of Southern Africa. Am. J. Hum. Genet. 23513.Google Scholar
  57. Johnson, G. B. (1974). Enzyme polymorphism and metabolism. Science 18428.Google Scholar
  58. Johnson, G. B. (1977). Characterization of electrophoretically cryptic variation in the alpine butterfly, Colias meadii. Biochem. Genet. 15665.Google Scholar
  59. Kimura, M., and Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics 49725.Google Scholar
  60. Kimura, M., and Ohta, T. (1971). Theoretical Aspects of Population Genetics, Princeton University Press, Princeton, N.J.Google Scholar
  61. Kirkman, H. N., Ramot, B., and Lee, J. T. (1969). Altered aggregational properties in genetic variant of human glucose-6-phosphate dehydrogenase. Biochem. Genet. 3137.Google Scholar
  62. Koehn, R. K., and Eanes, W. F. (1977). Subunit size and genetic variation of enzymes in natural populations of Drosophila. Theor. Pop. Biol. 11330.Google Scholar
  63. Kühnl, Q., Schmidtmann, U., and Spielmann, W. (1977). Evidence for two additional common alleles at the PGM 1 locus (Phosphoglucomutase—E.C. 2.7.5.1). A comparison by three different techniques. Hum. Genet. 35219.Google Scholar
  64. Leakey, T. E. B., Coward, A. R., Warlow, A., and Mourant, A. E. (1972). The distribution in human populations of electrophoretic variants of cytoplasmic malate dehydrogenase. Hum. Hered. 22542.Google Scholar
  65. Lewontin, R. D. (1974). The Genetic Basis of Evolutionary Change, Columbia University Press, New York.Google Scholar
  66. Lewontin, R. D., and Hubby, J. L. (1966). A molecular approach to the study of genic heterozygosity in natural populations. II. Amount of variation and degree of heterozygosity in natural populations of Drosophila pseudoobscura. Genetics 54595.Google Scholar
  67. Lie, H., and Teisberg, P. (1973). Red cell acid phosphatase polymorphism in Norway. Hum. Hered. 23257.Google Scholar
  68. Lie-Injo, L. E., and Welch, Q. B. (1972). Electrophoretic variants of 6-phosphogluconate dehydrogenase (6PGD) and phosphohexose isomerase (PHI) in different racial groups in Malaysia. Hum. Hered. 22338.Google Scholar
  69. Malcolm, L. A., Woodfield, D. G., Blake, N. M., and McDermid, E. M. (1972). The distribution of blood serum protein, and enzyme groups on Manus Island (Admiralty Islands, New Guinea). Hum. Hered. 22305.Google Scholar
  70. Marshall, D. R., and Brown, A. H. D. (1975). The charge state model of protein polymorphism in natural populations. J. Mol. Evol. 6149.Google Scholar
  71. McAlpine, P. J., Chen, S.-H., Cox, D. W., Dossetor, J. B., Giblett, E. R., Steinberg, A. G., and Simpson, N. W. (1974). Genetic markers in blood in a Canadian Eskimo population with a comparison of allele frequencies in circumpolar populations. Hum. Hered. 24114.Google Scholar
  72. Modiano, G., Bernini, L., Carter, N. D., Benerecetti-Santachiara, S. A., Detter, J. C., Baur, E. W., Paslucci, A. M., Gigliani, F., Morpurgo, G., Santolamazza, C., Scozzari, R., Terrenato, L., Khan, M. P., Nkjenhuis, L. E., and Kanashiro, V. K. (1972). A survey of several red cell and serum genetic markers in a Peruvian population. Am. J. Hum. Genet. 24111.Google Scholar
  73. Mitchell, R. J., Izatt, M. M., Sunderland, E., and Cartwright, R. A. (1976). Blood groups antigens, plasma protein and red cell isoenzyme polymorphisms in South-west Scotland. Ann. Hum. Biol. 3157.Google Scholar
  74. Mondorano, J. A., and Gaensslen, R. E. (1975). Distribution of adenylate kinase and phosphoglucomutase isozymes in the population of the city of New York. Hum. Hered. 25488.Google Scholar
  75. Monn, E., and Gjønness, H. (1971). Placenta phosphoglucomutase types in Norway: Gene frequencies, lack of association with prenatal factors and report of a new PGM2 phenotype. Hum. Hered. 21254.Google Scholar
  76. Mourant, A. E., Kopec, A. C., and Domaniewska-Sobczak, K. (1976). The Distribution of Human Blood Groups and Other Polymorphisms. Oxford Monographs on Medical Genetics, Oxford University Press, London.Google Scholar
  77. Müller, A., and Arends, T. (1971). Electrophoretic phenotypes of adenylate kinase in Venezuelan populations. Am. J. Hum. Genet. 23507.Google Scholar
  78. Neel, J. V., Ferrell, R. E., and Conrad, R. A. (1976). The frequency of “rare” protein variants in the Marshall Islanders and other Micronesians. Am. J. Hum. Genet. 28262.Google Scholar
  79. Nei, M. (1975). Molecular Population Genetics and Evolution, American Elsevier, New York.Google Scholar
  80. Nei, M., and Li, W.-H. (1976). The transient distribution of allele frequencies under mutation pressure. Genet. Res. 28205.Google Scholar
  81. Nei, M., Fuerst, P. A., and Chakraborty, R. (1976). Testing the neutral mutation hypothesis by distribution of single locus heterozygosity. Nature 262491.Google Scholar
  82. Ohta, T. (1976). Role of very slightly deleterious mutations in molecular evolution and polymorphism. Theor. Pop. Biol. 10254.Google Scholar
  83. Ohta, T., and Kimura, M. (1973). A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet. Res. 22201.Google Scholar
  84. Ohta, T., and Kimura, M. (1975). Theoretical analysis of electrophoretically detectable polymorphisms: Models of very slightly deleterious mutations. Am. Nat. 109137.Google Scholar
  85. Olaisen, B., and Teisberg, P. (1972). Erythrocyte alanine aminotransferase polymorphism in Norwegian Lapps. Hum. Hered. 22380.Google Scholar
  86. Omoto, K., and Blake, N. M. (1972). Distribution of genetic variants of erythrocyte phosphogly-cerate kinase (PGK) and phosphohexose isomerase (PHI) among some population groups in south-east Asia and Oceania. Ann. Hum. Genet. 3661.Google Scholar
  87. Peters, J., Hopkinson, D. A., and Harris, H. (1973). Genetic and nongenetic variation of triose phosphate isomerase isozymes in human tissues. Ann. Hum. Genet. 36297.Google Scholar
  88. Povey, S., Corney, G., Lewis, W. H. P., Robson, E. B., Parrington, J. M., and Harris, H. (1972). The genetics of peptidase C in man. Ann. Hum. Genet 35455.Google Scholar
  89. Roberts, D. F., Papiha, S. S., and Abeyaratue, K. P. (1972). Red cell enzyme polymorphisms in Ceylon Sinhalese. Am. J. Hum. Genet. 24181.Google Scholar
  90. Roberts, D. F., Papiha, S. S., Creen, C. K., Chhaparwal, B. C., and Mehta, S. (1974). Red cell enzyme and other polymorphic systems in Maldhya Pradesh, Central India. Ann. Hum. Biol. 1159.Google Scholar
  91. Singh, R. S., Hubby, J. L., and Throckmorton, L. H. (1975). The study of genic variation by electrophoretic and heat denaturation techniques at the octanol dehydrogenase locus in members of the Drosophila virilis group. Genetics 80637.Google Scholar
  92. Singh, R. S., Lewontin, R. C., and Felton, A. A. (1976). Genetic heterogeneity within electrophoretic “alleles” of xanthine dehydrogenase in Drosophila pseudoobscura. Genetics 84609.Google Scholar
  93. Sinha, K. P., and Hopkinson, D. A. (1969). The investigation of reactive sulphydryls in enzymes and their variants by starch gel electrophoresis: Studies on the human red cell peptidase variant PepA 5–1. Ann. Hum. Genet. 33139.Google Scholar
  94. Swallow, D. M., and Harris, H. (1972). A new variant of the placental acid phosphatases: Its implications regarding their subunit structures and genetic determination. Ann. Hum. Genet. 36141.Google Scholar
  95. Szeinberg, A., and Tomashevsky-Tamir, S. (1971). Red cell adenylate kinase and phosphoglucomutase polymorphisms in several population groups in Israel. Hum. Hered. 21289.Google Scholar
  96. Sørensen, S. A. (1972). Adenylate kinase, adenosine deaminase and phosphoglucomutase phenotypes in a Danish population. Hum. Hered. 22362.Google Scholar
  97. Sørensen, S. A. (1973). Human red cell acid phosphatase polymorphism. Population and family studies in Denmark. Hum. Hered. 23470.Google Scholar
  98. Tanis, R. J., Neel, J. V., Dovey, H., and Morrow, M. (1973). The genetic structure of a tribal population, the Yanomama Indians. IX. Gene frequencies for 18 serum protein and erythrocyte enzyme systems in the Yanomama and five neigh boring tribes: Nine new variants. Am. J. Hum. Genet. 25655.Google Scholar
  99. Turner, B. M., Fisher, R. A., Garthwaite, E., Whale, R. G., and Harris, H. (1974). An account of two new ICD-S variants not detectable in red blood cells. Ann. Hum. Genet. 37469.Google Scholar
  100. Turowska, B. (1975). Polymorphism of red cell phosphoglucomutase, adenylate kinase and adenosine deaminase in a Polish population. Hum. Hered. 25506.Google Scholar
  101. Turowska, B., Opokka, B., and Gawrzewski, W. (1976). Distribution of 6-phosphogluconate dehydrogenase variants in South Poland. Hum. Hered. 26319.Google Scholar
  102. Undevia, J. Y., Blake, N. M., Kirk, R. L., and McDonald, E. M. (1972). The distribution of some enzyme group systems among Parsis and Iranis in Bombay. Hum. Hered. 22274.Google Scholar
  103. Vergnes, H., and Cabannes, R. (1976). Polymorphism of erythrocyte and serum systems in the Gagu of the Ivory Coast. Ann. Hum. Biol. 3423.Google Scholar
  104. Vergnes, H., and Gourdin, D. (1974). Further data on the distribution of some red cell enzyme variants in African populations. Hum. Hered. 24463.Google Scholar
  105. Vergnes, H., Quilici, J. C., and Constans, J. (1967a). Serum and red cell enzyme polymorphisms in six Amerindian tribes. Ann. Hum. Biol. 3577.Google Scholar
  106. Vergnes, H., Quilici, J. C., Gherardi, M., and Bejarano, G. (1976b). Serum and red cell enzyme variants in an Amerindian tribe. The Sirionos. (Eastern Bolivia). Hum. Hered. 26252.Google Scholar
  107. Ward, R. D. (1977). Relationship between enzyme heterozygosity and quaternary structure. Biochem. Genet. 15123.Google Scholar
  108. Weitkamp, L. R., Salzano, F. M., Neel, J. V., Porta, F., Geerdink, R. A., and Tarnoky, A. L. (1973). Human serum albumin: Twenty-three genetic variants and their population distribution. Ann. Hum. Genet 36381.Google Scholar
  109. Welch, Q. B., Lie-Injo, L. E., and Bolton, J. M. (1972). Phosphoglucomutase and carbonic anhydrase in West Malaysian Aborigines. Hum. Hered. 2228.Google Scholar
  110. Welch, Q. B., Lie-Injo, L. E., and Gauesan, J. (1975a). Erythrocyte adenosine deaminase in Malaysians. Hum. Hered. 2569.Google Scholar
  111. Welch, Q. B., Lee, J., McGregor, I. A., and Williams, K. (1975b). Red cell glutamate-pyruvate transaminase gene frequencies in Gambia, West Africa. Hum. Hered. 25414.Google Scholar
  112. Welch, S. G. (1971). Qualitative and quantitative variants of human phosphoglucose isomerase. Hum. Hered. 21467.Google Scholar
  113. Welch, S. G. (1975). Population and family studies on carbonic anhydrase II polymorphism in Gambia, West Africa. Humangenetik 27163.Google Scholar
  114. Welch, S. G., Barry, J. V., Dodd, B. E., Griffiths, P. D., Huntsman, R. G., Lincoln, P. J., McCathie, M., Mears, G. W., and Parr, C. W. (1973). A survey of blood group, serum protein, and red cell polymorphisms in the Orkney Islands. Hum. Hered. 23230.Google Scholar
  115. Welch, S. G., Aidley, D. J., Barry, J. V., Carter, N. D., Culliford, B. J., Huntsman, R. C., Jenkins, G. C., Powell, R. G., and Parr, C. W. (1975). Blood group, serum protein and red cell enzyme polymorphisms in a population from the Seychelle islands. Hum. Hered. 25346.Google Scholar
  116. Williams, L., and Hopkinson, D. A. (1975). Further data on the incidence and segregation of genetically determined electrophoretical variants of human red cell NADH diaphorase. Hum. Hered. 25161.Google Scholar
  117. Woodfield, D. G., Seragg, R. F. R., Blake, N. M., Kirk, R. L., and McDermid, E. M. (1974). Distribution of blood, serum protein, and enzyme groups among the Fuyuge speakers of the Goilala subdistrict. Hum. Hered. 24507.Google Scholar
  118. Zouros, E. (1976). Hybrid molecules and the superiority of the heterozygote. Nature 262227.Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Walter F. Eanes
    • 1
  • Richard K. Koehn
    • 1
  1. 1.Institute for Ecology and GeneticsUniversity of AarhusAarhus C.Denmark

Personalised recommendations