Skip to main content
Log in

An anthranilate synthase of the extreme aminase type in a species of blue-green bacteria (algae)

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Anthranilate synthase of Agmenellum quadruplicatum, a unicellular species of blue-green bacteria, consists of two nonidentical subunits. A 72,000 dalton protein has aminase activity but is incapable of reaction with glutamine (amido-transferase) unless a second protein (18,000 molecular weight) is present. The small subunit was first detected through its ability to complement a partially purified aminase subunit from Bacillus subtilis to produce a hybrid complex capable of amidotransferase function. Conditions for the function of the heterologous complex were less stringent than for the homologous A. quadruplicatum complex. A reducing agent such as dithiothreitol stabilizes the A. quadruplicatum aminase subunit and is obligatory for amidotransferase function. l-Tryptophan feedback inhibits both the aminase and amidotransferase reactions of anthranilate synthase; Ki values of 6×10−8 m for the amidotransferase activity and 2×10−6 m for the aminase activity were obtained. The Km value calculated for ammonia (2.2 mm) was more favorable than the Km value for glutamine (13 mm). Likewise, the Vmax of anthranilate was greater with ammonia than with glutamine. Starvation of a tryptophan auxotroph results in a threefold derepression of the aminase subunit, but no corresponding increase in the small 18,000 \(\bar M\) subunit occurs. While microbial anthranilate synthase complexes are remarkably similar overall, the relatively good aminase activity of the A. quadruplicatum enzyme may be of physiological significance in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-el-al, A., and Ingraham, J. L. (1969). Control of carbamyl phosphate synthesis in Salmonella typhimurium. J. Biol. Chem. 224033.

    Google Scholar 

  • Ames, B. N. (1973). In Prusiner, S., and Stadtman, E. R. (eds.), Enzymes of Glutamine Metabolism, Academic Press, New York, pp. 569–571.

    Google Scholar 

  • Andrews, P. (1965a). Estimation of the molecular weight of proteins by Sephadex gel-filtration. Biochem. J. 91222.

    Google Scholar 

  • Andrews, P. (1965b). The gel filtration behavior of proteins related to their molecular weights over a wide range. Biochem. J. 96595.

    Google Scholar 

  • Baskerville, E., and Twarog, R. (1974). Regulation of a ligand-mediated association-dissociation system of anthranilate synthesis in Clostridium butyricum. J. Bacteriol. 1171184.

    Google Scholar 

  • Buchanan, J. M. (1973). In Prusiner, S., and Stadtman, E. R. (eds.), Enzymes of Glutamine Metabolism. Academic Press, New York, pp. 387–408.

    Google Scholar 

  • Cedar, H., and Schwartz, J. H. (1969). The asparagine synthetase of Escherichia coli: Biosynthetic role of the enzyme, purification, and characterization of the reaction products. J. Biol. Chem. 2444112.

    Google Scholar 

  • Chakraborty, K. P., and Hurlburt, R. B. (1961). Role of glutamine in the biosynthesis of cytidine nucleotides in Escherichia coli. Biochim. Biophys. Acta. 47607.

    Google Scholar 

  • Edwards, J. M., and Jackman, L. M. (1965). Chorismic acid: A branch point intermediate in aromatic biosynthesis. Aust. J. Chem. 181227.

    Google Scholar 

  • Edwards, J. M., Gibson, F., Jackman, L. M., and Shannon J. S. (1964). The source of the nitrogen atom for the biosynthesis of anthranilic acid. Biochim. Biophys. Acta. 9378.

    Google Scholar 

  • Egan, A. F., and Gibson F. (1966). Anthranilate synthetase and PR-transferase from Aerobacter aerogenes as a protein aggregate. Biochim. Biophys. Acta. 130276.

    Google Scholar 

  • Fukuyama, T. T., and Moyed, H. S. (1964). A separate antibiotic-binding site in xanthosine-5′-phosphate aminase: Inhibitor-and substrate-binding studies. Biochemistry 31488.

    Google Scholar 

  • Gibson, F., Pittard, J., and Reich, E. (1967). Ammonium ions as the source of nitrogen for tryptophan biosynthesis in whole cells of Escherichia coli. Biochim. Biophys. Acta. 136573.

    Google Scholar 

  • Hankins, C. N., and Mills, S. E. (1976). Anthranilate synthase-amidotransferase (combined). J. Biol. Chem. 2517774.

    Google Scholar 

  • Henderson, E. J., and Zalkin, H. (1971). On the composition of anthranilate synthetase-anthranilate-5-phosphoribosylpyrophosphate phosphoribosyltransferase from Salmonella typhimurium. J. Biol. Chem. 2466891.

    Google Scholar 

  • Huang, M., and Gibson, F. (1970). Biosynthesis of 4-aminobenzoate in Escherichia coli. J. Bacteriol. 102767.

    Google Scholar 

  • Ingram, L. O., Pierson, D. L., Kane, J. F., VanBaalen, C., and Jensen, R. A. (1972). Documentation of auxotrophic mutation in blue-green bacteria: Characterization of a tryptophan auxotroph in Agmenellum quadruplicatum. J. Bacteriol. 111112.

    Google Scholar 

  • Ito, J., and Yanofsky, C. (1966). The nature of the anthranilate synthetase complex of Escherichia coli J. Biol. Chem. 2414112.

    Google Scholar 

  • Ito, J., and Yanofsky, C. (1969). Anthranilate synthase, an enzyme specified by the tryptophan operon of Escherichia coli: Comparative studies on the complex and the subunits. J. Bacteriol. 997734.

    Google Scholar 

  • Ito, J., Cox, E. C., and Yanofsky, C. (1969). Anthranilate synthase, an enzyme specified by the tryptophan operon of Escherichia coli: Purification and characterization of component I. J. Bacteriol. 97725.

    Google Scholar 

  • Jackson, E. N., and Yanofsky, C. (1974). Localization of two functions of the phosphoribosyl anthranilate transferase of Escherichia coli to distinct regions of the polypeptide chain. J. Bacteriol. 117502.

    Google Scholar 

  • Kane, J. F. (1975). Metabolic interlock: Mediation of interpathway regulation by divalent cations. Arch. Biochem. Biophys. 170452.

    Google Scholar 

  • Kane, J. F., and Jensen, R. A. (1970). The molecular aggregation of anthranilate synthase in Bacillus subtilis. Biochem. Biophys. Res. Commun. 41328.

    Google Scholar 

  • Kane, J. F., Holmes, W. M., and Jensen, R. A. (1972). Metabolic interlock: The dual function of a folate pathway gene as an extra-operonic gene of tryptophan biosynthesis. J. Biol. Chem. 2471587.

    Google Scholar 

  • Kane, J. F., Holmes, W. F., Smiley, K. L., and Jensen, R. A. (1973). Rapid regulation of an anthranilate synthase aggregate by hysteresis. J. Bacteriol. 113224.

    Google Scholar 

  • Kornfeld, R. (1967). Studies on l-glutamine d-fructose 6-phosphate amidotransferase: Feedback inhibition by uridine diphosphate-N-acetylglucosamine. J. Biol. Chem. 2423135.

    Google Scholar 

  • Kuhn, J. C., Pabst, M. J., and Somerville, R. L. (1972). Mutant strains of Escherichia coli K-12 exhibiting enhanced sensitivity to 5-methyltryptophan. J. Bacteriol. 11293.

    Google Scholar 

  • LeGal, M., Le Gal, Y., Roche, J., and Hedegaard, J. (1967). Purine biosynthesis: Enzymatic formation of ribosylamine-5-phosphate from ribose-5-phosphate and ammonia. Biochem. Biophys. Res. Commun. 27618.

    Google Scholar 

  • Levitzki, A. (1973). In Prusiner, S., and Stadtman, E. R. (eds.), Enzymes of Glutamine Metabolism, Academic Press, New York, pp. 505–521.

    Google Scholar 

  • Li, S.-L., Hanlon, J., and Yanofsky, C. (1974). Structural homology of the glutamine amidotransferase subunits of anthranilate synthetases of Escherichia coli, Salmonella typhmurium and Serratia marcescens. Nature 24848.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193265.

    Google Scholar 

  • Mantsala, P., and Zalkin, H. (1976). Active subunits of Escherichia coli glutamate synthase. J. Bacteriol. 126539.

    Google Scholar 

  • Mathews, S. L., and Anderson, P. M. (1972). Evidence for the presence of two nonidentical subunits in carbamyl phosphate synthetase of Escherichia coli. Biochemistry 111176.

    Google Scholar 

  • Metzenberg, R. L., Marshall, M., and Cohen, P. P. (1958). Carbamyl phosphate synthetase: Studies on the mechanism of action. J. Biol. Chem. 2331560.

    Google Scholar 

  • Miller, R. E., and Stadtman, E. R. (1972). Glutamate synthase from Escherichia coli. An iron sulfide flavoprotein. J. Biol. Chem. 2477407.

    Google Scholar 

  • Patel, N., Holmes, W. M., and Kane, J. F. (1974). Homologous and hybrid complexes of anthranilate synthase from Bacillus species. J. Bacteriol. 119220.

    Google Scholar 

  • Patel, N., Moyed, H. S., and Kane, J. F. (1977). Properties of xanthosine 5′-monophosphate-amidotransferase from Escherichia coli. Arch. Biochem. Biophys. 178652.

    Google Scholar 

  • Queener, S. W., Queener, S. F., Meeks, J. R., and Gunsalus, I. C. (1970). Anthranilate synthase enzyme system and complementation in Pseudomonas species. Proc. Natl. Acad. Sci. 671225.

    Google Scholar 

  • Queener, S. W., Queener, S. F., Meeks, J. R., and Gunsalus, I. C. (1973). Anthranilate synthetase from Pseudomonas putida. Purification and properties of a two-component enzyme. J. Biol. Chem. 248151.

    Google Scholar 

  • Reichard, P. (1959). In Nord, N. F. (ed.), Advances in Enzymology, Interscience, New York, p. 281.

    Google Scholar 

  • Robb, F., and Belser, W. F. (1972). In vitro complementation between Serratia marcescens and Escherichia coli subunits. Biochim. Biophys. Acta 285243.

    Google Scholar 

  • Robb, F., Hutchinson, M. A., and Belser, W. L. (1971). Anthranilate synthetase: Some physical and kinetic properties of the enzyme from Serratia marcescens. J. Biol. Chem. 2466908.

    Google Scholar 

  • Sawula, R. V., and Crawford, I. P. (1973). Anthranilate synthetase of Acinetobacter calcoaceticus: Separation and partial characterization of subunits. J. Biol. Chem. 2483573.

    Google Scholar 

  • Spencer, R. L., and Preiss, J. (1967). Biosynthesis of diphosphopyridine nucleotide: The purification and the properties of diphosphopyridine nucleotide synthetase. J. Biol. Chem. 242385.

    Google Scholar 

  • Tamir, H., and Srinivasan, P. R. (1969) Purification and properties of anthranilate synthase from Salmonella typhimurium. J. Biol. Chem. 2446507.

    Google Scholar 

  • Trotta, P. P., Burt, M. E., Haschemeyer, R. H., and Meister, A. (1971). Reversible dissociation of carbamyl phosphate synthetase iinto a regulated synthesis subunit and a subunit required for glutamine utilization. Proc. Natl. Acad. Sci. 682599.

    Google Scholar 

  • Trotta, P. P., Estis, L. F., Meister, A., and Haschemeyer, R. H. (1974). Self-association and allosteric properties of glutamine-dependent carbamyl phosphate synthetase. J. Biol. Chem. 249482.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by Grant PCM 7619963 from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, E., Jensen, R.A. An anthranilate synthase of the extreme aminase type in a species of blue-green bacteria (algae). Biochem Genet 16, 867–881 (1978). https://doi.org/10.1007/BF00483739

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00483739

Key words

Navigation