Advertisement

Water, Air, and Soil Pollution

, Volume 83, Issue 1–2, pp 69–84 | Cite as

Distribution of phosphorus in soil aggregate fractions and its significance with regard to phosphorus transport in agricultural runoff

  • Z. L. He
  • M. J. Wilson
  • C. O. Campbell
  • A. C. Edwards
  • S. J. Chapman
Article

Abstract

Surface runoff is the major way of P transport from agricultural land to surface waters. To assess the potential of P loss in runoff in relation to soil P status, the chemical nature and distribution of soil P in different size classes of water-stable aggregates were quantified for two distinctive soil types. For both soils unfertilized areas under pasture and well-fertilized arable soils were sampled. The content of total P, organic P and microbial biomass P (Pmic) decreased in the aggregate size order <0.1, 1–2, and 0.1–1.0 mm respectively. In contrast available P (extracted by Bray I reagent) was lowest in the <0.1 mm aggregate size. Cultivation decreased the percentage of 1–2 mm aggregates but increased that of the <0.1 mm aggregates. Fertilization increased markedly both total P and organic P in the <0.1 mm fraction of arable soils compared to the corresponding samples from unfertilized grassland soils. During aggregate separation, most of P loss was in the form of particulate P and less than 1% in solution. More organic P and Pmic were lost from the grassland soils than from the arable soils.

Keywords

Biomass Phosphorus Soil Type Microbial Biomass Agricultural Land 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. P. E. and Domsch, K. H.: 1980, Soil Science 130, 211.Google Scholar
  2. Boardman, J.: 1990, ‘Soil Erosion on the South Downs: A Review’, in J. Boardman et al. (eds.). Soil Erosion on Agricultural Land, John Wiley & Sons, Ltd, England, pp. 87–105.Google Scholar
  3. Bowman, R. A.: 1989, Soil Sci. Soc. Am. J. 53, 362.Google Scholar
  4. Bray, R. H. and Kurtz, L. T.: 1945, Soil Sci. 59, 39.Google Scholar
  5. Brookes, P. C., Powlson, D. S. and Jenkinson, D. S.: 1982, Soil Biol. Biochem. 14, 377.Google Scholar
  6. Brookes, P. C., Powlson, D. S. and Jenkinson, D. S.: 1984, Soil Biol Biochem. 16, 169.Google Scholar
  7. Gupta, V. V. S. R. and Germida, J. J.: 1988, Soil Biol. Biochem. 20, 777.Google Scholar
  8. Hasebe, A. Kanazawa, S. and Takai, Y.: 1985, Soil Sci. and Plant Nutri. 31, 349.Google Scholar
  9. He, Z. L., O'Donnell, A. G. and Syers, J. K.: 1994a, Soil Biol. Biochem. (in press).Google Scholar
  10. He, Z. L., O'Donnell, A. G., Wu, J. and Syers, J. K.: 1994b, Soil Biol. Biochem. (in press).Google Scholar
  11. Hedley, M. and Stewart, J. W. B.: 1982, Soil Biol. Biochem. 14, 377.Google Scholar
  12. Jenkinson, D. S. and Powlson, D. S.: 1976, Soil Biol. Biochem. 8, 209.Google Scholar
  13. Johnson, A. M., Bouldin, D. R., Goyette, E. A. and Hedges, A. H.: 1976, Journal of Environmental Quality 5, 148.Google Scholar
  14. Kronvang, B.: 1990, ‘Sediment-Associated Phosphorus Transport from Two Intensively Farmed Catchment Areas’, in J. Boardman et al. (eds.), Soil Erosion on Agricultural Land, John Wiley & Sons, Ltd, England, pp. 313–330.Google Scholar
  15. Loch, R. J. and Donnollan, T. E.: 1983, Aust. J. Soil Res. 21, 47.Google Scholar
  16. Lynch, J. M. and Bragg, E.: 1985, Adv. Soil Sci. 2, 123.Google Scholar
  17. Murphy, J. and Riley, J. P.: 1962, Anal. Chim. Acta 21, 31.Google Scholar
  18. Olsen, S. R. and Khasawneh, F. E.: 1980, ‘Use and Limitations of Physical-Chemical Criteria for Assessing the Status of Phosphorus in Soils’, in Khasawneh, F. E., Sample, E. C. and Kamprath, E. J. (eds.) The Role of Phosphorus in Agriculture, ASA. CSSA. SSSA. Madison, WI, U.S.A. pp. 361.Google Scholar
  19. Perrot, K. W. and Sarathchandra, S. U. 1989, New Zealand, J. Agric. Res. 32, 409.Google Scholar
  20. Rigler, F. E.: 1979, Journal of Marine Biological Association of the United Kingdom, 59, 659.Google Scholar
  21. Schumanm, G. E., Piest, R. F. and Spomer, R. G.: 1976, Proceedings of third Federal Interagency Sedimentation Conference, Water Resources Council, Washington, D.C. 5-28-340.Google Scholar
  22. Sharpley, A. N. and Smith, S. J.: 1990, ‘Phosphorus Transport in Argricultural Runoff: The Role of Soil Erosion’, in J. Boardman et al., (eds.), Soil Erosion on Agricultural Land. John Wiley & Sons, Ltd, England, pp. 351–366.Google Scholar
  23. Smith, J. L. and Paul, E. A.: 1990, ‘The Significance of Soil Microbial Biomass Estimations’, in (ed.) by Jean-Marc Bollag and G. Stotzky, Marcel Dekker, INC New York. pp. 359–396.Google Scholar
  24. Sparling, G. P., Milne, J. D. G. and Vincent, K. W.: 1987, New Zealand J. Agric. Res. 30, 79.Google Scholar
  25. Sparling, G. P., West, A. W. and Reynolds, J.: 1989, Aust. J. Soil res. 27, 161.Google Scholar
  26. Srivastava, S. C. and Singh, J. S.: 1988, Soil Biol. Biochem. 20, 743.Google Scholar
  27. Williams, B. L.: 1983, J. Soil Sci. 34, 113.Google Scholar
  28. Wilson, M. J., Bain, D. C. and Duthie, D. M. L.: 1984, Clay Miner. 19, 709.Google Scholar
  29. Wu, J., Joergensen, R. G., Pommerening, B., Chanssod, R. and Brookes, P. C.: 1990. Soil Biol. Biochem. 22, 1167.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Z. L. He
    • 1
  • M. J. Wilson
    • 1
  • C. O. Campbell
    • 1
  • A. C. Edwards
    • 2
  • S. J. Chapman
    • 1
  1. 1.Division of Soils and MicrobiologyThe Macaulay Land Use Research Institute CraigiebucklerAberdeenUK
  2. 2.Plants DivisionThe Macaulay Land Use Research Institute CraigiebucklerAberdeenUK

Personalised recommendations