Fresenius' Zeitschrift für analytische Chemie

, Volume 335, Issue 4, pp 382–385 | Cite as

Determination of the oxidation states of bismuth and copper in superconductor Bi-Ca-Sr-Cu-O by oxidation-reduction titration

  • Masaoki Oku
  • Jin Kimura
  • Mamoru Omori
  • Kichinosuke Hirokawa
Original Papers Inorganic Technological Materials


The oxidation state of the superconductor Bi-Ca-Sr-Cu-O was determined by two procedures. One was ferrous-chromate titration after dissolution of the sample in manganous nitrate solution. The other was the titration after dissolution in ferrous ion solution. The former procedure gives the concentration of a state like pentavalent bismuth and the latter gives the sum of concentrations of a state like pentavalent bismuth and a state like trivalent copper or peroxide. The result of the titration shows that the superconductor oxide has the state like pentavalent bismuth but not like that of trivalent copper. This is a striking contrast to YBa2Cu3O7−y having a high concentration of the latter state. Although the result was compared with X-ray photoelectron spectra, a clear relationship between them was not obtained.


Copper Nitrate Peroxide Titration Bismuth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bestimmung der Oxidationsstufen von Bismut und Kupfer im Supraleiter Bi-Ca-Sr-Cu-O durch Redoxtitration


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blank DHA, Flokstra J, Gerritsma GJ, Van De Klunder LJM, Velders GJM (1987) Physica 145B:222Google Scholar
  2. 2.
    Zhang Y-C, Liu J-H, Dwight K, Rieger PH, Wold A (1987) Solid State Commun 63:765Google Scholar
  3. 3.
    Eickenbusch H, Paulus W, Schollhorn R, Schlogl R (1987) Mat Res Bull 22:1505Google Scholar
  4. 4.
    Bazarotti A, De Crescenzi A, Giovannelia C, Messi R, Motta N, Patelia F, Sgarlata A (1987) Phys Rev B 36:8285Google Scholar
  5. 5.
    Lytle FW, Greegor RB (1988) Phys Rev B 37:1550Google Scholar
  6. 6.
    Bianconi A, Castellano AC, De Santis A, Delogu P, Gargano A, Giogi R (1987) Solid State Commun 63:1135Google Scholar
  7. 7.
    Bianconi A, Bundnick J, Fontaine AM, Lagarde P, Marcelli A, Tolentino A, Chamberland B, Michel C, Raveau B, Demazeau G (1988) Phys Lett A 127:285Google Scholar
  8. 8.
    Kachel T, Sen P, Dauth B, Campagna M (1988) Z Phys B-Condens Matt 70:137Google Scholar
  9. 9.
    Fujimori A, Takayama-Muromachi E, Uchida Y (1987) Solid State Commun 63:857Google Scholar
  10. 10.
    Yamoff JA, Clatke DR, Drube W, Karlsson UO, Taleb-Ibrajimi A, Himpsel FJ (1987) Phys Rev B 36:3967Google Scholar
  11. 11.
    De Bethune, Loud NAS “Standard Aqueous Electrode Potentials and Temperature Coefficients at 25” Clifford A Hampel, III (1964)Google Scholar
  12. 12.
    Charlot G (1957) L'analyse quantitative et les reactions en solution. Masson, ParisGoogle Scholar
  13. 13.
    Tarascon JM, McKinnon WR, Barboux P, Hwang DM, Bagley BG, Greene LH, Hull GW, LePage Y, Stoffel N, Giroud M (1988) Phys Rev B36:8885Google Scholar
  14. 14.
    Oku M, Kimura J, Hosoya M, Takada K, Hirokawa K (1988) Fresenius Z Anal Chem 332:237Google Scholar
  15. 15.
    Shafer MW, De Groot RA, Plechaty MM, Scilla GJ (1988) Phys Script C 153–155:836Google Scholar
  16. 16.
    Kohiki S, Wada T, Kawashima S, Takagi H, Uchida S, Tanaka S (1988) Phys Rev B 38:7051Google Scholar
  17. 17.
    Hüfner S, Wertheim GK (1975) Phys Rev B11:678; Phys Rev B11:5197; Phys Rev Lett 35:53Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Masaoki Oku
    • 1
  • Jin Kimura
    • 1
  • Mamoru Omori
    • 1
  • Kichinosuke Hirokawa
    • 1
  1. 1.The Institute for Materials ResearchTohoku UniversitySendaiJapan

Personalised recommendations