Quantitative NRA and SIMS depth profiling of hydrogen in naturally weathered medieval glass

  • M. Schreiner
  • M. Grasserbauer
  • P. March
Inorganic Material


NRA and SIMS measurements were carried out with samples from naturally weathered medieval glass paintings in order to study the quantitative depth distribution of hydrogen in the surface layers. The major parts of the profiles show good agreements in shape and depth. Nevertheless, differences were observed in the near-surface region. It could be shown that proper attention has to be paid to the vacuum environment of the instruments and to sample preparation before evacuation in order to avoid evaporation of hydrogen containing species incorporated into the silicate structure during leaching or weathering.


Hydrogen Evaporation Silicate Inorganic Chemistry Surface Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Quantitative NRA- und SIMS-Tiefenprofilanalyse von Wasserstoff in natürlich verwitterten mittelalterlichen GlÄsern


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perez Y, Jorba M, Dallas JP, Bauer C, Bahezre C, Martin JC (1980) J Mat Sci 15:1640Google Scholar
  2. 2.
    Newton RG (1985) Glass Technol 26:21Google Scholar
  3. 3.
    Weigel HJ (1980) Korrosionsuntersuchungen an ModellglÄsern für mittelalterliche Glaszusammensetzungen. Thesis, University of Erlangen-Nürnberg, FRGGoogle Scholar
  4. 4.
    Boksay Z, Bouquet G (1980) Phys Chem Glass 21:110Google Scholar
  5. 5.
    Clark DE, Pantano CG, Hench LL (1979) Corrosion of glass. Books for Industry and the Glass Industry, New YorkGoogle Scholar
  6. 6.
    Scholze H (1982) J Non-Cryst Solids 52:91Google Scholar
  7. 7.
    Doremus RH (1983) J Non-Cryst Solids 55:143Google Scholar
  8. 8.
    Tomozawa M, Capella S (1983) J Am Ceram Soc 66:C24Google Scholar
  9. 9.
    Hopfe J, Albrecht R, Hillebrand R, Pippel A, Schmidt V (1984) Ultramicroscopy 15:71Google Scholar
  10. 10.
    Fox PG (1981) Glass Technol 22:67Google Scholar
  11. 11.
    Bach H, Gro\kopf K, March P, Rauch F (1987) Glastech Ber 60:21Google Scholar
  12. 12.
    Lanford WA, Trautvetter HP, Ziegler JF, Keller J (1976) Appl Phys Lett 28:566Google Scholar
  13. 13.
    Rauch F (1985) Nucl Instrum Methods Phys Res B10:746Google Scholar
  14. 14.
    Gossink RG, De Grefte HAM, Werner HW (1979) J Am Ceram Soc 62:4Google Scholar
  15. 15.
    Smets BMJ, Lommen TPA (1982) Phys Chem Glass 23:83Google Scholar
  16. 16.
    Richter T, Frischat GH, Borchardt G, Scherrer S (1985) Phys Chem Glass 26:208Google Scholar
  17. 17.
    Lacharme JP, Lehuede P (1985) J Am Ceram Soc 68:C-134Google Scholar
  18. 18.
    Lodding A, Odelius H, Clark DE, Werme LO (1985) Mikrochim Acta Suppl 11:145Google Scholar
  19. 19.
    Ziegler JF (1980) Stopping cross-sections for energetic ions in all elements. Vol 5 of: The stopping and ranges of ions in matter. Pergamon Press, OxfordGoogle Scholar
  20. 20.
    Northcliffe LC, Schilling RF (1970) Nucl Data Tables A7:233Google Scholar
  21. 21.
    Schreiner M, Stingeder G, Grasserbauer M (1984) Fresenius Z Anal Chem 319:600Google Scholar
  22. 22.
    Stingeder G (1987) Fresenius Z Anal Chem 327:225Google Scholar
  23. 23.
    Stingeder G, Grasserbauer M, Traxlmayr U, Guerrero E, Pötzl H (1985) Microchim Acta Suppl 11:171Google Scholar
  24. 24.
    Newbury DE (1979) Scanning 3:110Google Scholar
  25. 25.
    Doremus RH, Mehrotra Y, Lanford WA, Burman C (1983) J Mater Sci 18:612Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. Schreiner
    • 1
  • M. Grasserbauer
    • 2
  • P. March
    • 3
  1. 1.Institute of ChemistryAcademy of Fine ArtsViennaAustria
  2. 2.Institute of Analytical ChemistryTechnical UniversityViennaAustria
  3. 3.Institute of Nuclear PhysicsJ.W. Goethe UniversityFrankfurtGermany

Personalised recommendations