Cold vapor atomic absorption spectrometric determination of mercury using sodium tetrahydroborate reduction and collection on gold

  • Bernhard Welz
  • Marianne Schubert-Jacobs
Atom-spectroscopic Methods


Sodium tetrahydroborate(III) is equivalent to or better than tin(II) chloride as a reducing agent for mercury in cold vapor atomic absorption spectrometry using collection on gold. Concentrations of copper, silver, nickel, iodide, antimony, arsenic, bismuth and selenium typically found in water or waste water do not interfere. Prerequirements for satisfactory performance are that the gold is at a temperature below 100‡C during collection of mercury and that the gas from the reaction flask is washed with sodium hydroxide and dried with magnesium perchlorate. All determinations were carried out in 5 mol l−1 hydrochloric acid and in the presence of 200 mg l−1 iron(III). Detection limits (3σ) of 0.15 ng absolute, and of 15 ng l−1 or 3 ng l−1, using 10 ml or 50 ml solution, respectively, are obtained. The analytical curve is linear to 40 ng, and the relative standard deviation in the optimum working range is better than 2%.


Mercury Arsenic Selenium Bismuth Antimony 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Kaltdampf-Atomabsorptionsspektrometrische Bestimmung von Quecksilber mit Reduktion durch Natrium-Tetrahydroborat und Sammeln auf Gold


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Azzaria LM (1967) Geol Surv Can Pap 66-54:13Google Scholar
  2. 2.
    Brandenberger H, Bader H (1967) Helv Chim Acta 50:1409Google Scholar
  3. 3.
    Bricker JL (1980) Anal Chem 52:492Google Scholar
  4. 4.
    Freimann P, Schmidt D (1982) Fresenius Z Anal Chem 313:200Google Scholar
  5. 5.
    Glass GE, Leonard EN, Chan WH, Orr DB (1986) J Great Lakes Res 12:37Google Scholar
  6. 6.
    Kaiser G, Götz D, Tölg G, Knapp G, Maichin B, Spitzy H (1978) Fresenius Z Anal Chem 291:278Google Scholar
  7. 7.
    Kalb GW (1970) At Absorpt Newsl 9:84Google Scholar
  8. 8.
    Lopez-Escobar L, Hume DN (1973) Anal Lett 6:343Google Scholar
  9. 9.
    Mertens H, Althaus A (1983) Fresenius Z Anal Chem 316:696Google Scholar
  10. 10.
    Neske P, Hellwig A, Dornheim L, Thriene B (1984) Fresenius Z Anal Chem 318:498Google Scholar
  11. 11.
    Nojiri Y, Otsuki A, Fuwa K (1986) Anal Chem 58:544Google Scholar
  12. 12.
    Olafsson J (1974) Anal Chim Acta 68:207Google Scholar
  13. 13.
    Poluektov NS, Vitkun RA (1963) Zh Anal Khim 18:33Google Scholar
  14. 14.
    Poluektov NS, Vitkun RA, Zelyukova YV (1964) Zh Anal Khim 19:873Google Scholar
  15. 15.
    Schroeder WH, Hamilton MC, Stobart SR (1985) Rev Anal Chem, Tel Aviv 8:179Google Scholar
  16. 16.
    Sturgeon RE, Willie SN, Berman SS (1986) Fresenius Z Anal Chem 323:788Google Scholar
  17. 17.
    Toffaletti J, Savory J (1975) Anal Chem 47:2091Google Scholar
  18. 18.
    Welz B, Melcher M, Sinemus HW, Maier D (1984) At Spectrosc 5:37Google Scholar
  19. 19.
    Welz B, Melcher M (1984) Analyst 109:569Google Scholar
  20. 20.
    Welz B, Melcher M (1984) Analyst 109:577Google Scholar
  21. 21.
    Welz B, Schubert-Jacobs M (1986) J Anal At Spectrom 1:23Google Scholar
  22. 22.
    Woodson TT (1939) Rev Sci Instrum 10:308Google Scholar
  23. 23.
    Yamamoto Y, Kumamaru T, Shiraki A (1978) Fresenius Z Anal Chem 292:273Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Bernhard Welz
    • 1
  • Marianne Schubert-Jacobs
    • 1
  1. 1.Department of Applied ResearchBodenseewerk Perkin-Elmer & Co GmbHüberlingenGermany

Personalised recommendations