European Journal of Pediatrics

, Volume 125, Issue 3, pp 197–204 | Cite as

Mechanism of diet-induced uraemia and acidosis in infants

  • G. Zoppi
  • G. Zamboni
Article

Abstract

Five patients aged between 40 and 70 days were admitted to our Clinic with an initial diagnosis of “renal failure”, but the high levels of urea nitrogen, metabolic acidosis and oliguria were found to be related to a high renal solute load and to the very high protein and electrolyte content of the diet.

By calculating urinary output (V/m'), clearance of osmotically-active substances (COsm), clearance of free water \({\text{(C}}_{{\text{H}}_{\text{2}} {\text{O}}} {\text{)}}\), maximum tubular reabsorption of water \({\text{(T}}^{\text{c}} _{{\text{H}}_{\text{2}} {\text{O}}} {\text{)}}\) and the change in metabolic H+ production, it has been possible to demonstrate that dietary protein and electrolytes were both responsible for the high blood urea nitrogen levels and metabolic acidosis.

Key words

Renal solute load Diet Metabolic acidosis Uraemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramms, C. A., Phillips, L. L.: Hazard of overconcentrated milk formula. Hyperosmolarity, disseminated intravascular coagulation and gangrena. Journal of the American Medical Association 232, 1136 (1975)Google Scholar
  2. Ballabriga, A., Martinez, M.: Renal response of premature infants to milk formulas of different acid and protein contents. Helvetica Paediatrica Acta 24, 111 (1969)Google Scholar
  3. Bergman, K. E., Ziegler, E. E., Fomon, S. J.: Water and renal solute load. In: Fomon, S. J. (1974). Infant nutrition. pg. 245. Philadelphia: Saunders Co. 2nd ed. 1974Google Scholar
  4. Chambers, T. L., Stell, A. E.: Concentrated milk feeds and their relation to hypernatraemic dehydratation in infants. Archives of Disease in Childhood 50, 610 (1975)Google Scholar
  5. Finberg, L.: Parenteral fluid and electrolyte therapy. In: Gellis, J. S., Kagan, B. M. Current pediatric therapy. pg. 752. Philadelphia: W. B. Saunders Co. 1976Google Scholar
  6. Fomon, S. J.: Nitrogen balance studies with normal fullterm infants receiving high intakes of protein. Pediatrics 28, 347 (1961)Google Scholar
  7. Gaull, G. E.: Gli effetti della quantità e qualità delle proteine del latte sui neonati di basso peso. 3e Giornate di Studio Plasmon, Sanremo 1975Google Scholar
  8. Kildeberg, P., Winters, R.: Infant feeding and blood acid-base status. Pediatrics 49, 801 (1972)Google Scholar
  9. Lindquist, B.: Potenzialità acido-base e carico in soluti dei latti artificiali. Milano: 2e Giornate di Studio Plasmon 1973Google Scholar
  10. Lindquist, B.: Standards and indication for industrially produced infant formulas. Acta Paediatrica Scandinavica 64, 677 (1975)Google Scholar
  11. Robson, A. M.: Parenteral fluid therapy. In: Vaughan, V. C., McKay, R. J. Nelson Textbook of Pediatrics, pg. 257. 10th edition. Philadelphia: Saunders Co. 1975Google Scholar
  12. Royer, P.: Bases métaboliques de l'utilisation des laits dits “humanisés”. Pädiatrische Fortbildungskurse für die Praxis 37, 15 (1973)Google Scholar
  13. Svenningsen, N. W., Lindquist, B.: Incidence of metabolic acidosis in term, preterm and small-for-gestational age infants in relation to dietary protein intake. Acta Paediatrica Scandinavica 62, 1 (1973)Google Scholar
  14. Svenningsen, N. W., Lindquist, B.: Postnatal development of renal hydrogen ion excretion capacity in relation to age and protein intake. Acta Paediatrica Scandinavica 63, 721 (1974)Google Scholar
  15. Ziegler, E. E., Fomon, S. J.: Fluid intake, renal solute load and water balance in infancy. The Journal of Pediatrics 78, 561 (1971)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • G. Zoppi
    • 1
  • G. Zamboni
    • 1
  1. 1.Cattedra di Auxologia e Clinica Pediatrica dell'UniversitàPoliclinico Borgo RomaVeronaItaly

Personalised recommendations