Skip to main content
Log in

Studies of aluminium complexation to humic and fulvic acids using a method for the determination of quickly reacting aluminium

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

We have recently presented a method for the determination of quickly reacting aluminium in natural waters based on kinetic discrimination in a flow system. This method has been further validated using both an isolated fulvic acid and natural humus-rich waters. Different reaction times were used, further clarifying the response of aluminium complexed with humic and fulvic acids. Equilibrium dialysis was also used as a reference method for comparison. With the reaction time used normally, 2.3 s, aluminium complexed with humic or fulvic acids was shown not to be measured with our method. These results suggest that our method may be used for studies of the complexation of aluminium with humic and fulvic acids. We have compared results from a series of solutions with varying concentrations of fulvic acids with calculations based on two different models obtained from complexation studies performed by potentiometric titrations and by equilibrium dialysis. The results show fair agreement and suggest that our method can be used for such studies. This approach is more sensitive and rapid than potentiometric titrations, enabling studies of humus interactions with aluminium at concentrations similar to those found in natural waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

[Al′]:

Concentration of all dissolved alumininium that has not reacted with RFA

Alqr :

Quickly Reacting Aluminium

[AlRFA′]:

Concentration of complexes formed between Al and RFA

[Al]tot :

Total aluminium concentration

DEAE:

Diethylaminoethyl cellulose

FIA:

Flow Injection Analysis

FA:

Fulvic acid

GFAAS:

Graphite Furnace Atomic Absorption Spectrophotometry

H2L:

Diprotic ligand used by Lövgren et al. (1987) as a model compound for organic matter in a concentrated bog water

HS:

Humic substances

ICP-OES:

Inductively Coupled Plasma Optical Emission Spectrometry

K′:

Conditional equilibrium constant

References

  • Backes, C. A. and Tipping, E.: 1987a, Wat. Res. 21, 211.

    Google Scholar 

  • Backes, C. A. and Tipping, E.: 1987b, Intern. J. Environ. Anal. Chem. 30, 135.

    Google Scholar 

  • Barnes, R. B.: 1975, Chem. Geol. 15, 177.

    Google Scholar 

  • Berdén, M., Clarke, N., Danielsson, L.-G. and Sparén, A.: 1994, Water, Air, and Soil Pollut. 72, 213.

    Google Scholar 

  • Berggren, D.: 1989, Int. J. Environ. Anal. Chem. 35, 1.

    Google Scholar 

  • Bishop, K. H., Grip., H. and O'Neill, A.: 1990, J. Hydrol. 116, 35.

    Google Scholar 

  • Browne, B. A., McColl, J. G. and Driscoll, C. T.: 1990, J. Environ. Qual. 19, 73.

    Google Scholar 

  • Clarke, N.: 1994, Ph.D. Thesis, The Royal Institute of Technology, Stockholm, Sweden.

    Google Scholar 

  • Clarke, N., Danielsson, L.-G. and Sparén, A.: 1991, Finnish Humus News 3(3), 253.

    Google Scholar 

  • Clarke, N., Danielsson, L.-G. and Sparén, A.: 1992, Int. J. Environ. Anal. Chem. 48, 77.

    Google Scholar 

  • Driscoll, C. T.: 1984, Int. J. Envir. Anal. Chem. 16, 267.

    Google Scholar 

  • Driscoll, C. T., Baker, J. P., Bisogni, J. J. and Schofield, C. L.: 1980, Nature (London) 284, 161.

    Google Scholar 

  • Driscoll, C. T. and Schecher, W. D.: 1988, in Metal Ions in Biological Systems, H. Sigel and A. Sigel (eds.), Marcel Dekker Inc., New York, U.S.A. pp. 59–121.

    Google Scholar 

  • Dyrssen, D.: 1984, Vatten 40, 3.

    Google Scholar 

  • Ephraim, J., Alegret, S., Mathuthu, A., Bicking, M., Malcolm, R. L. and Marinsky, J. A.: 1986, Environ. Sci. Technol. 20, 354.

    Google Scholar 

  • Ephraim, J. H., Borén, H., Pettersson, C., Arsenie, I. and Allard, B.: 1989, Environ. Sci. Technol. 23, 356.

    Google Scholar 

  • Gjessing, E. T., Riise, G., Petersen, R. C. and Andruchow, E.: 1989, Sci. Tot. Environ. 81/82, 683.

    Google Scholar 

  • Gunn, A. M., Hunt, D. T. E. and Winnard, D. A.: 1986, in Proc. Int. Conf. Chem. Env. (J. N. Lester, R. Perry and R. M. Sterritt, Eds.), Selper Ltd., London, U.K. p. 628.

    Google Scholar 

  • Hedlund, T., Sjöberg, S. and Öhman, L.-O.: 1987, Act. Chem. Scand. A 41, 197.

    Google Scholar 

  • Hodges, S.C.: 1987, Soil. Sci. Soc. Am. J. 51, 57.

    Google Scholar 

  • Ingri, N., Kakolowicz, W., Sillén, L. G. and Warnqvist, B.: 1967, Talanta 14, 1261.

    Google Scholar 

  • Kinraide, T. B.: 1991, Plant and Soil 134, 167.

    Google Scholar 

  • Kramer, J. R., Hummel, J. and Gleed, J.: 1986, in Proc. Int. Conf. Chem. Env., J. N. Lester, R. Perry and R.M. Sterritt, (eds.), Selper Ltd., London, U.K., p. 636.

    Google Scholar 

  • Lalande, H. and Hendershot, W. H.: 1986, Can. J. Fish. Aquat. Sci. 43, 231.

    Google Scholar 

  • LaZerte, B. D.: 1984, Can. J. Fish. Aquat. Sci. 41, 766.

    Google Scholar 

  • Lindsay, W. L.: 1979, Chemical Equilibria in Soils. Wiley, New York, U.S.A.

    Google Scholar 

  • Lundin, L.: 1994, in Effects of Acidification on Groundwater in Sweden — Hydrological and Hydrochemical Processes, L. Maxe, (ed.), Final Report II of the Swedish Integrated Groundwater Acidification Project, Chapter 5.

  • Lundström, U. S.: 1993. J. Soil Sci. 44, 121.

    Google Scholar 

  • Lövgren, L., Hedlund, T., Öhman, L.-O. and Sjöberg, S.: 1987, Wat. Res. 21, 1401.

    Google Scholar 

  • Marklund, E., Öhman, L.-O. and Sjöberg, S.: 1989, Acta Chem. Scand. 43, 641.

    Google Scholar 

  • Pettersson, C.: 1992, Ph.D. Thesis, University of Linköping, Sweden.

    Google Scholar 

  • Pettersson, C., Arsenie, L., Ephraim, J., Borén, H. and Allard, B.: 1989, Sci. Total Environ., 81/82, 287.

    Google Scholar 

  • Pettersson, C., Ephraim, J. and Allard, B.: 1992, in C. Pettersson, ‘Properties of Humic Substances from Groundwater and Surface Waters’. Ph.D. Thesis, University of Linköping, Sweden, Paper III.

    Google Scholar 

  • Richards, E. G.: 1980, An Introduction to Physical Properties of Large Molecules in Solution, Cambridge University Press, Cambridge, U.K., p. 201.

    Google Scholar 

  • Ringbom, A.: 1963, Complexation in Analytical Chemistry, Interscience, New York, U.S.A., p. 37.

    Google Scholar 

  • Røgeberg, E. J. S. and Henriksen, A.: 1985, Vatten 41, 48.

    Google Scholar 

  • Smith, R. W.: 1971, Adv. Chem. Ser. 106, 250 (Am. Chem. Soc., Washington, D.C., U.S.A.).

    Google Scholar 

  • Stevenson, F. J. and Vance, G. F.: 1989, in The Environmental Chemistry of Aluminium, G. Sposito, (ed.), CRC Press, Inc., Boca Raton, Florida, U.S.A., pp. 117–145.

    Google Scholar 

  • Stumm, W. and Morgan, J. J.: 1981, Aquatic Chemistry, Wiley-Interscience, New York, U.S.A., 2nd ed.

    Google Scholar 

  • Thurman, E. M. and Malcolm, R. L.: 1981, Environ. Sci. Technol. 15, 463.

    Google Scholar 

  • Tipping, E., Backes, C. A. and Hurley, M. A.: 1988, Wat. Res. 22, 597.

    Google Scholar 

  • Tipping, E., Woof, C. and Hurley, M. A.: 1991, Wat. Res. 25, 425.

    Google Scholar 

  • Öhman, L.-O. and Forsling, W.: 1981, Act. Chem. Scand. A 35, 795.

    Google Scholar 

  • Öhman, L.-O., Sjöberg, S. and Ingri, N.: 1983, Acta Chem. Scand. A 37, 561.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, N., Danielsson, L.G. & Sparén, A. Studies of aluminium complexation to humic and fulvic acids using a method for the determination of quickly reacting aluminium. Water Air Soil Pollut 84, 103–116 (1995). https://doi.org/10.1007/BF00479591

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00479591

Keywords

Navigation