Advertisement

Water, Air, and Soil Pollution

, Volume 84, Issue 1–2, pp 103–116 | Cite as

Studies of aluminium complexation to humic and fulvic acids using a method for the determination of quickly reacting aluminium

  • N. Clarke
  • L. -G. Danielsson
  • A. Sparén
Article

Abstract

We have recently presented a method for the determination of quickly reacting aluminium in natural waters based on kinetic discrimination in a flow system. This method has been further validated using both an isolated fulvic acid and natural humus-rich waters. Different reaction times were used, further clarifying the response of aluminium complexed with humic and fulvic acids. Equilibrium dialysis was also used as a reference method for comparison. With the reaction time used normally, 2.3 s, aluminium complexed with humic or fulvic acids was shown not to be measured with our method. These results suggest that our method may be used for studies of the complexation of aluminium with humic and fulvic acids. We have compared results from a series of solutions with varying concentrations of fulvic acids with calculations based on two different models obtained from complexation studies performed by potentiometric titrations and by equilibrium dialysis. The results show fair agreement and suggest that our method can be used for such studies. This approach is more sensitive and rapid than potentiometric titrations, enabling studies of humus interactions with aluminium at concentrations similar to those found in natural waters.

Keywords

Aluminium Reaction Time Titration Humus Natural Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

[Al′]

Concentration of all dissolved alumininium that has not reacted with RFA

Alqr

Quickly Reacting Aluminium

[AlRFA′]

Concentration of complexes formed between Al and RFA

[Al]tot

Total aluminium concentration

DEAE

Diethylaminoethyl cellulose

FIA

Flow Injection Analysis

FA

Fulvic acid

GFAAS

Graphite Furnace Atomic Absorption Spectrophotometry

H2L

Diprotic ligand used by Lövgren et al. (1987) as a model compound for organic matter in a concentrated bog water

HS

Humic substances

ICP-OES

Inductively Coupled Plasma Optical Emission Spectrometry

K′

Conditional equilibrium constant

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backes, C. A. and Tipping, E.: 1987a, Wat. Res. 21, 211.Google Scholar
  2. Backes, C. A. and Tipping, E.: 1987b, Intern. J. Environ. Anal. Chem. 30, 135.Google Scholar
  3. Barnes, R. B.: 1975, Chem. Geol. 15, 177.Google Scholar
  4. Berdén, M., Clarke, N., Danielsson, L.-G. and Sparén, A.: 1994, Water, Air, and Soil Pollut. 72, 213.Google Scholar
  5. Berggren, D.: 1989, Int. J. Environ. Anal. Chem. 35, 1.Google Scholar
  6. Bishop, K. H., Grip., H. and O'Neill, A.: 1990, J. Hydrol. 116, 35.Google Scholar
  7. Browne, B. A., McColl, J. G. and Driscoll, C. T.: 1990, J. Environ. Qual. 19, 73.Google Scholar
  8. Clarke, N.: 1994, Ph.D. Thesis, The Royal Institute of Technology, Stockholm, Sweden.Google Scholar
  9. Clarke, N., Danielsson, L.-G. and Sparén, A.: 1991, Finnish Humus News 3(3), 253.Google Scholar
  10. Clarke, N., Danielsson, L.-G. and Sparén, A.: 1992, Int. J. Environ. Anal. Chem. 48, 77.Google Scholar
  11. Driscoll, C. T.: 1984, Int. J. Envir. Anal. Chem. 16, 267.Google Scholar
  12. Driscoll, C. T., Baker, J. P., Bisogni, J. J. and Schofield, C. L.: 1980, Nature (London) 284, 161.Google Scholar
  13. Driscoll, C. T. and Schecher, W. D.: 1988, in Metal Ions in Biological Systems, H. Sigel and A. Sigel (eds.), Marcel Dekker Inc., New York, U.S.A. pp. 59–121.Google Scholar
  14. Dyrssen, D.: 1984, Vatten 40, 3.Google Scholar
  15. Ephraim, J., Alegret, S., Mathuthu, A., Bicking, M., Malcolm, R. L. and Marinsky, J. A.: 1986, Environ. Sci. Technol. 20, 354.Google Scholar
  16. Ephraim, J. H., Borén, H., Pettersson, C., Arsenie, I. and Allard, B.: 1989, Environ. Sci. Technol. 23, 356.Google Scholar
  17. Gjessing, E. T., Riise, G., Petersen, R. C. and Andruchow, E.: 1989, Sci. Tot. Environ. 81/82, 683.Google Scholar
  18. Gunn, A. M., Hunt, D. T. E. and Winnard, D. A.: 1986, in Proc. Int. Conf. Chem. Env. (J. N. Lester, R. Perry and R. M. Sterritt, Eds.), Selper Ltd., London, U.K. p. 628.Google Scholar
  19. Hedlund, T., Sjöberg, S. and Öhman, L.-O.: 1987, Act. Chem. Scand. A 41, 197.Google Scholar
  20. Hodges, S.C.: 1987, Soil. Sci. Soc. Am. J. 51, 57.Google Scholar
  21. Ingri, N., Kakolowicz, W., Sillén, L. G. and Warnqvist, B.: 1967, Talanta 14, 1261.Google Scholar
  22. Kinraide, T. B.: 1991, Plant and Soil 134, 167.Google Scholar
  23. Kramer, J. R., Hummel, J. and Gleed, J.: 1986, in Proc. Int. Conf. Chem. Env., J. N. Lester, R. Perry and R.M. Sterritt, (eds.), Selper Ltd., London, U.K., p. 636.Google Scholar
  24. Lalande, H. and Hendershot, W. H.: 1986, Can. J. Fish. Aquat. Sci. 43, 231.Google Scholar
  25. LaZerte, B. D.: 1984, Can. J. Fish. Aquat. Sci. 41, 766.Google Scholar
  26. Lindsay, W. L.: 1979, Chemical Equilibria in Soils. Wiley, New York, U.S.A.Google Scholar
  27. Lundin, L.: 1994, in Effects of Acidification on Groundwater in Sweden — Hydrological and Hydrochemical Processes, L. Maxe, (ed.), Final Report II of the Swedish Integrated Groundwater Acidification Project, Chapter 5.Google Scholar
  28. Lundström, U. S.: 1993. J. Soil Sci. 44, 121.Google Scholar
  29. Lövgren, L., Hedlund, T., Öhman, L.-O. and Sjöberg, S.: 1987, Wat. Res. 21, 1401.Google Scholar
  30. Marklund, E., Öhman, L.-O. and Sjöberg, S.: 1989, Acta Chem. Scand. 43, 641.Google Scholar
  31. Pettersson, C.: 1992, Ph.D. Thesis, University of Linköping, Sweden.Google Scholar
  32. Pettersson, C., Arsenie, L., Ephraim, J., Borén, H. and Allard, B.: 1989, Sci. Total Environ., 81/82, 287.Google Scholar
  33. Pettersson, C., Ephraim, J. and Allard, B.: 1992, in C. Pettersson, ‘Properties of Humic Substances from Groundwater and Surface Waters’. Ph.D. Thesis, University of Linköping, Sweden, Paper III.Google Scholar
  34. Richards, E. G.: 1980, An Introduction to Physical Properties of Large Molecules in Solution, Cambridge University Press, Cambridge, U.K., p. 201.Google Scholar
  35. Ringbom, A.: 1963, Complexation in Analytical Chemistry, Interscience, New York, U.S.A., p. 37.Google Scholar
  36. Røgeberg, E. J. S. and Henriksen, A.: 1985, Vatten 41, 48.Google Scholar
  37. Smith, R. W.: 1971, Adv. Chem. Ser. 106, 250 (Am. Chem. Soc., Washington, D.C., U.S.A.).Google Scholar
  38. Stevenson, F. J. and Vance, G. F.: 1989, in The Environmental Chemistry of Aluminium, G. Sposito, (ed.), CRC Press, Inc., Boca Raton, Florida, U.S.A., pp. 117–145.Google Scholar
  39. Stumm, W. and Morgan, J. J.: 1981, Aquatic Chemistry, Wiley-Interscience, New York, U.S.A., 2nd ed.Google Scholar
  40. Thurman, E. M. and Malcolm, R. L.: 1981, Environ. Sci. Technol. 15, 463.Google Scholar
  41. Tipping, E., Backes, C. A. and Hurley, M. A.: 1988, Wat. Res. 22, 597.Google Scholar
  42. Tipping, E., Woof, C. and Hurley, M. A.: 1991, Wat. Res. 25, 425.Google Scholar
  43. Öhman, L.-O. and Forsling, W.: 1981, Act. Chem. Scand. A 35, 795.Google Scholar
  44. Öhman, L.-O., Sjöberg, S. and Ingri, N.: 1983, Acta Chem. Scand. A 37, 561.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • N. Clarke
    • 1
  • L. -G. Danielsson
    • 1
  • A. Sparén
    • 1
  1. 1.Division of Analytical ChemistryThe Royal Institute of TechnologyStockholmSweden

Personalised recommendations