Water, Air, and Soil Pollution

, Volume 84, Issue 1–2, pp 11–29 | Cite as

Hydrogeochemical behavior of chromium in the unsaturated zone and in the aquifer of leon valley, Mexico

  • M. A. Armienta
  • A. Quéré


The ground water of Leon valley, Central Mexico, is contaminated with chromium. A study was carried out to determine the main physico-chemical interactions between chromium and the aquifer solid matrix in the most polluted area. Five boreholes, 30 m deep, were drilled and used as piezometers. Unaltered solid cores were analyzed for Cr(VI), total Cr, Fe and Mn. Cr(VI) was determined in the water from the piezometers. We conclude that reduction of Cr(VI) by iron is important, adsorption of Cr(VI) by sand and gravel layers is negligible, and adsorption by silt and clay layers is significant in the saturated and unsaturated zones. In the saturated zone hexavalent chromium distributes preferentially in the water phase oxidation of chromium by manganese was not detected. A correlation between chromium, manganese and iron concentrations was observed for the aquifer solid matrix in this area, when the source of chromium was not anthropogenic.


Oxidation Iron Clay Chromium Manganese 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armienta, H. M. A.: 1992, Contribución al Estudio de los Mecanismos de Transporte del Cromo en el Acuífero de Leon, Gto, Ph. D. Thesis, Universidad Nacional Autónoma de México, México, D. F.Google Scholar
  2. Armienta, H. M. A. and Quéré, A.: 1991, Ciencia 42, 233.Google Scholar
  3. Armienta, M. A., Rodriguez, R., Quéré, A., Juárez, F., Ceniceros, N. and Aguayo, A.: 1993, J. Environ. Anal. Chem. 54, 1.Google Scholar
  4. ASTM: 1991, Standard Test Method for Particle-Size Analysis of Soil, Annual Book of ASTM Standards, D422-63.Google Scholar
  5. Bartlett, R. J.: 1986, ‘Soil Redox Behaviour’, in: D. L. Sparks (ed.), Soil Physical Chemistry, CRC Press, Boca Raton, Florida, USA, pp. 179–207.Google Scholar
  6. Bartlett, R. J. and James, B.: 1988, ‘Mobility and Bioavailability of Chromium in Soils’, in: J. O. Nriagu and E. Nieoeber (eds,), Chromium in the Natural and Human Environments, John Wiley & Sons, N. Y., pp. 268–304.Google Scholar
  7. Bartlett, R. J. and James, B.: 1979, J. Environ. Qual. 8, 31.Google Scholar
  8. Bartlett, R. J. and Kimble, J. M.: 1976a, J. Environ. Qual. 5, 379.Google Scholar
  9. Bartlett, R. J. and Kimble, J. M.: 1976b, J. Environ. Qual. 5, 383.Google Scholar
  10. Benes, P., Gjessing, E. T. and Steinnes, E.: 1876, Wat. Res. 10, 711.Google Scholar
  11. Bloomfield, C. and Pruden, G.: 1980, Env. Poll. (A), 23, 103.Google Scholar
  12. Costantino, T., Costantino, D. and Nagourney, S.: 1989, Proc. Pittsburgh Conference 1989, Atlanta U.S.A. 150.Google Scholar
  13. Eary, E. and Ral, D.: 1987, Environ. Sci. Technol. 21, 1187.Google Scholar
  14. Griffin, R. A., Au, A. K. and Frost, R. R.: 1977, J. Environ. Sci. Health A12, 431.Google Scholar
  15. Grove, J. H. and Ellis, B. G.: 1980, Soil Sci. Soc. J. 44, 243.Google Scholar
  16. James, B. R. and Bartlett, R. J.: 1983a, J. Environ. Qual. 12, 169.Google Scholar
  17. James, B. R. and Bartlett, R. J.: 1983b, J. Environ. Qual. 12, 173.Google Scholar
  18. James, B. R. and Bartlett, R. J.: 1983c, J. Environ. Qual. 12, 177.Google Scholar
  19. Hem, J. D.: 1977, Geochim et Cosmochim. Acta 41, 527.Google Scholar
  20. Koppelman, M. H. and Dillard, J. G.: 1980, Clays and Clay Minerals 28, 211.Google Scholar
  21. Koppelman, M. H., Emerson, A. B.: 1980, Clays and Clay Minerals 28, 119.Google Scholar
  22. Nieboer, E. and Jusys, A. A.: 1988, ‘Biologic Chemistry of Chromium’, in: J. O. Nriagu and E. Nieoeber, (eds.), Chromium in the Natural and Human Environments, John Wiley & Sons, N. Y, pp. 21–79.Google Scholar
  23. Rai, D., Sass, B. M. and Moore, D. A.: 1987, Inorg. Chem. 26, 345.Google Scholar
  24. Richard, F. C. and Bourg, A. C. M.: 1991, Wat. Res. 25, 807.Google Scholar
  25. Rodriguez, C. R., Armienta, H. M. A., Villanueva, S. S., Diaz, Garcia, P. and Gonzalez, M. T.: 1991, Estudio Hidrogeoqumico y Modelacíon Matematica del Acuífero del Rí Turbio para Definir las Acciones Encaminadas a Proteger de Contaminantes la Fuente de Abastecimiento de la Ciudad de Leon, Gto., IGF-UNAM, CNA-SARH. Technical Report CC-88-306 D, Universidad Nacional Autonoma de Mexico, México, D. F.Google Scholar
  26. Sass, B. M. and Rai, D.: 1987, Inorg. Chem. 26, 2228.Google Scholar
  27. Schroeder, D. C. and Lee, G. F.: 1975, Water, Air, and Soil Pollut. 4, 355.Google Scholar
  28. Sparks, D. L.: 1989, Kinetics of Soil Chemical Processes, Academic Press, San Diego, USA.Google Scholar
  29. Stollenwerk, K. G. and Grove, D. B.: 1985, J. Environ. Qual. 14, 150.Google Scholar
  30. Stumm, W.: 1992, Chemistry of the Solid-Water Interface, John Wiley & Sons, Inc., N. Y, USA.Google Scholar
  31. Venitt, S. and Levy, L. S.: 1974, Nature 250, 493.Google Scholar
  32. Zachara, J. M., Girvin, D. C., Schmidt, R. L. and Resch, C.: 1987, Environ Sci. Technol. 21, 589.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • M. A. Armienta
    • 1
  • A. Quéré
    • 2
  1. 1.Instituto de GeofisicaUNAM, Circuito Exterior C.U. MéxicoDF
  2. 2.Facultad de QuímicaUNAM, Circuito Escolar C. U. MéxicoDF

Personalised recommendations