Skip to main content
Log in

Influence of anion background on transport of calcium and magnesium

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Anions in solution may affect cation exchange on the solid matrix by forming complexes. The importance of this effect for transport depends on the charge and stability of the complexes formed. Studies indicate that this effect might be important for cation complexes with anions. In this study batch and column experiments were performed in order to compare the influence of chloride, perchlorate, and sulfate on transport and equilibrium ion exchange of calcium and magnesium in two forest soils. The batch experiments indicated that the selectivity coefficient for Ca vs. Mg is lower in a perchlorate or sulfate than in a chloride background. The anion background was not found to influence Mg-Ca breakthrough curves. However, differences of estimated parameters between runs with the same anion were large and exceeded those between runs with different anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, F., C. Burmester, N.V. Hue, and F.L. Long. 1980. A comparison of column-displacement and centrifuge methods for obtaining soil solutions. Soil Sci. Soc. Am. J. 44: 733–735.

    Google Scholar 

  • Amrhein, C. and D.L. Suarez. 1990. Procedure for determing sodium-calcium selectivity in calcareous and gypsiferous soils. Soil Sci. Soc. Am. J. 54:999–1007.

    Google Scholar 

  • Bolt, G.H., M.G.M. Bruggenwert, and A. Kamphorst. 1978. Adsorption of cations by soil. In Bolt, G.H., and M.G.M. Bruggenwert (eds.), Soil Chemistry, A.Basic elements. Elsevier, Amsterdam, pp. 54–90.

    Google Scholar 

  • Bruggenwert, M.G.M., and A. Kamphorst. 1979. Survey of experimental information on cation exchange in soil systems. In Bolt, G.H.(ed.), Soil Chemistry, B.Physico-chemical models. Elsevier, Amsterdam, pp. 141–203.

    Google Scholar 

  • Cederberg, G.A., R.L. Street, and J.O. Leckie. 1985. A groundwater mass transport equilibrium chemistry model for multicomponent systems. Water Resour. Res. 21:1095–1104.

    Google Scholar 

  • Flühler, H., and W.A. Jury. 1983. Estimating solute transport using nonlinear, rate dependent, two site adsorption models. Eidg. Anst. forstl. Versuchswes., Ber. 245. Birmensdorf.

  • Förster, R.. 1986. A multicomponent transport model. Geoderma 38:261–278.

    Google Scholar 

  • Gaston, L.A., and H.M. Selim. 1990. Transport of exchangeable cations in an aggregated clay soil. Soil Sci. Soc. Am. J. 54: 31–38.

    Google Scholar 

  • Hester, R.E., and R.A. Plane. 1964. A Raman spectrometric comparison of interionic association in aqueous solutions of metal nitrates, sulfates, and perchlorates. Inorg. Chem. 3:769–770.

    Google Scholar 

  • Hodges, S.C., and G.C. Johnson. 1987. Kinetics of sulfate adsorption and desorption by Cecil soil using miscible displacement. Soil Sci. Soc. Am. J. 51: 323–331.

    Google Scholar 

  • Jackson, M.L. 1958. Soil chemical analysis. Englewood Cliffs, N.J., Prentice Hall, Inc., 498 pp.

    Google Scholar 

  • Lai, S.H., and J.J. Jurinak. 1972. Cation adsorption in one-dimensional flow through soils: A numerical solution. Water Resour. Res.8:99–107.

    Google Scholar 

  • Levy, R., and I. Shainberg. 1972. Calcium-magnesium exchange in montmorillonite and vermiculite. Clays Clay Miner. 20: 37–46.

    Google Scholar 

  • Mansell, R.S., S.A. Bloom, H.M. Selim, and R.D. Rhue. 1988. Simulated transport of multiple cations in soil using variable selectivity coefficients. Soil Sci. Soc. Am. J. 52: 1533–1540.

    Google Scholar 

  • Miller, C.W., and L.V. Benson. 1983. Simulation of solute transport in a chemically reactive heterogenous system: Model development and application. Water Resour. Res. 19:381–391.

    Google Scholar 

  • Miller, D.M., M.E. Sumner, and W.P. Miller. 1989. A comparison of batch- and flow-generated anion adsorption isotherms. Soil Sci. Soc. Am. J. 53: 373–380.

    Google Scholar 

  • Persaud, N., and P.J. Wierenga. 1982. A differential model for one-dimensional cation transport in discrete homoionic ion exchange media. Soil Sci. Soc. Am. J. 46: 482–490.

    Google Scholar 

  • Persaud, N., J.M. Davidson, and P.S.C. Rao. 1983. Miscible displacement of inorganic cations in a discrete homoionic exchange medium. Soil Sci. 136:269–278.

    Google Scholar 

  • Rhue, R.D., and W.H. Reve. 1990. Exchange capacity and adsorbed-cation charge as affected by chloride and perchlorate. Soil Sci. Soc. Am. J. 54:705–708.

    Google Scholar 

  • Rubin, J., and R.V. James. 1973. Dispersion-affected transport of reacting solutes in saturated porous media: Galerkin method applied to equilibrium controlled exchange in unidirectional steady water flow. Water Resour. Res. 5: 1332–1356.

    Google Scholar 

  • Schmitt, H. W., and H. Sticher. 1986. Long-term trend analysis of heavy metal content and translocation in soils. Geoderma 38:195–207.

    Google Scholar 

  • Schulin, R., A. Papritz, H. Flühler, and H.M. Selim. 1989. Calcium and magnesium transport in aggregated soils at variable ionic strength. Geoderma 44:129–141.

    Google Scholar 

  • Schulin, R., A. Papritz, H. Flühler, and H.M. Selim. 1990. Parameter estimation for simulating binary homovalent cation transport in aggregated soils at variable ionic strength. J. Contam. Hydrol.7:1–19.

    Google Scholar 

  • Schweich, D., M. Sardin, and J.-P. Gaudet. 1983. Measurement of a cation exchange isotherm from elution curves obtained in a soil column: Preliminary results. Soil Sci. Soc. Am. J. 47: 32–37.

    Google Scholar 

  • Selim, H.M., R. Schulin and H. Flühler. 1987. Transport and ion exchange of calcium and magnesium in an aggregated soil. Soil Sci. Soc. Am. J. 51: 876–884.

    Google Scholar 

  • Smith, R.M., and A.E. Martell. 1976. Critical stability constants. Vol. 4: Inorganic complexes. Plenum Press, New York.

    Google Scholar 

  • Sposito, G. 1981. The thermodynamics of soil solutions. Clarendon Press, Oxford. 223 pp.

    Google Scholar 

  • Sposito, G. 1991. Effect of chloride ions on sodium-calcium and sodium-magnesium exchange on montmorillonite. Soil Sci. Soc. Am. J. 55:965–967.

    Google Scholar 

  • Sposito, G., and J. Coves. 1988. SOILCHEM: A computer program for the calculation of chemical speciation in soils. University of California, Riverside and Berkley.

    Google Scholar 

  • Sposito, G., K.M. Holtzclaw, C. Jouany, and L. Charlet. 1983a. Cation selectivity in sodium-calcium, sodium-magnesium, and calcium-magnesium exchange on Wyoming Bentonite at 298 K. Soil Sci. Soc. Am. J. 47:917–921.

    Google Scholar 

  • Sposito, G., K.M. Holtzclaw, L. Charlet, C. Jouany, and A.L. Page. 1983b. Sodium-calcium and sodium-magnesium exchange on Wyoming bentonite in perchlorate and chloride background ionic media. Soil Sci. Soc. Am. J. 47: 51–56.

    Google Scholar 

  • Stumm, W., and J.J. Morgan. 1981. Aquatic chemistry. J. Wiley, New York. 780 pp.

    Google Scholar 

  • Suarez, D.L., and M.F. Zahow. 1989. Calcium-magnesium exchange selectivity of Wyoming montmorillonite in chloride, sulfate, perchlorate solutions. Soil Sci. Soc. Am. J. 53:52–57

    Google Scholar 

  • Thomas, G.W. 1982. Exchangeable cations. In: A.L. Page et al. (eds.), Methods of soil analysis, Part 2: Chemical and microbiological properties. Agron. Monogr. 9, Am. Soc. Agron., Madison, WI, pp. 159–165.

    Google Scholar 

  • Travis, C.C., and E.L. Etnier. 1981. A survey of sorption relationships for reactive solutes in soil. J. Environ. Qual. 10:8–17.

    Google Scholar 

  • Valocchi, A.J., R.L. Street, and P.V. Roberts. 1981. Transport of ion-exchanging solutes in groundwater: Chromatographic theory and field simulation. Water Resour Res. 17: 1517–1527.

    Google Scholar 

  • van Eijkeren, J.C.M., and J.P.G. Loch. 1984. Transport of cationic solutes in sorbing porous media. Water Resour Res. 20: 714–718.

    Google Scholar 

  • van Genuchten, M.Th. 1981. Non-equilibrium transport parameters from miscible displacement experiments. Res. Rep. no. 119. U.S. Salinity Laboratory, Riverside, Calif. 80 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchter, B., Schulin, R. & Flühler, H. Influence of anion background on transport of calcium and magnesium. Water Air Soil Pollut 68, 257–273 (1993). https://doi.org/10.1007/BF00479407

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00479407

Keywords

Navigation