Advertisement

Chemistry of Heterocyclic Compounds

, Volume 24, Issue 8, pp 892–897 | Cite as

Bromination of quinoline derivatives with N-bromosuccinimide. Isomeric composition of the bromination products by PMR and GLC

  • A. I. Tochilkin
  • I. R. Kovel'man
  • E. P. Prokof'ev
  • I. N. Gracheva
  • M. V. Levinskii
Article

Abstract

The bromination of quinoline and substituted quinolines with N-bromosuccinimide in concentrated H2SO4 takes place exclusively in the homocyclic part. Bromo-substituted quinolines can be obtained by this method. The bromination products were identified by PMR spectroscopy. The differences among the mono-, di-, and trisubstituted (in the benzene ring) compounds were established on the basis of the type of spectrum of the protons of the homocyclic part of the molecule. The compositions of the reaction mixtures were studied by GLC.

Keywords

Spectroscopy Benzene Organic Chemistry H2SO4 Benzene Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    G. Jones, Quinolines, Wiley, New York-Sydney-Toronto (1977), pp. 45, 324.Google Scholar
  2. 2.
    M. Gordon and D. E. Pearson, J. Org. Chem., 29, 329 (1964).Google Scholar
  3. 3.
    M. Gordon, H. I. Hamelton, G. Adkins, I. Hay, and D. E. Pearson, J. Heterocycl. Chem., 4, 410 (1967).Google Scholar
  4. 4.
    P. B. D. De la Mare, M. H. I. Kiamuddin, and J. H. Ridd, J. Chem. Soc., No. 2, 561 (1960).Google Scholar
  5. 5.
    A. I. Tochilkin and I. N. Gracheva, Khim. Geterotsikl. Soedin., No. 3, 336 (1980).Google Scholar
  6. 6.
    A. Edinger and J. B. Ekely, J. Prakt. Chem., 17, 209 (1902).Google Scholar
  7. 7.
    F. L. Lambert, W. D. Ellis, and R. I. Parry, J. Org. Chem., 30, 304 (1965).Google Scholar
  8. 8.
    H. Gershon, M. W. McNeil, and S. C. Schulman, J. Org. Chem., 37, 4078 (1972).Google Scholar
  9. 9.
    T. Ukai, J. Pharm. Soc. Jpn., 51, 542 (1931).Google Scholar
  10. 10.
    P. A. Claret and A. G. Osborn, Tetrahedron., 33, 1765 (1977).Google Scholar
  11. 11.
    A. S. Pilipenko, L. I. Savranskii, and V. A. Nikitina, Dok. Akad. Nauk SSSR, 246, 625 (1979).Google Scholar
  12. 12.
    I. Kidrič, D. HadŽi, D. Kocjan, and V. Rutar, Org. Magn. Reson., 15, 280 (1981).Google Scholar
  13. 13.
    M. Attimonelli and O. Sciacovelli, Org. Magn. Reson., 12, 17 (1979).Google Scholar
  14. 14.
    G. Barbieri, R. Benassi, P. Lazaretti, L. Schenetti, and F. Taddei, Org. Magn. Reson., 7, 451 (1975).Google Scholar
  15. 15.
    P. T. Black and M. L. Hefferman, Aust. J. Chem., 17, 558 (1964).Google Scholar
  16. 16.
    I. N. Gracheva, E. P. Prokof'ev, I. R. Kovel'man, and A. I. Tochilkin, Khim. Geterotsikl. Soedin., No. 8, 1065 (1985).Google Scholar
  17. 17.
    Beilstein, 3-4 Erganzungswerk, 22, Part 6, 4826.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. I. Tochilkin
    • 1
  • I. R. Kovel'man
    • 1
  • E. P. Prokof'ev
    • 1
  • I. N. Gracheva
    • 1
  • M. V. Levinskii
    • 1
  1. 1.Institute of Biological and Medicinal ChemistryAcademy of Medical Sciences of the USSRMoscow

Personalised recommendations