Water, Air, and Soil Pollution

, Volume 73, Issue 1, pp 11–27 | Cite as

Chemical and mineralogical weathering rates and processes in an upland granitic till catchment in Scotland

  • D. C. Bain
  • A. Mellor
  • M. J. Wilson
  • D. M. L. Duthie


Weathering in an upland granitic till catchment receiving an intermediate level of acidic deposition has been studied by chemical and mineralogical analyses of soil profiles and chemical analysis of precipitation and streamwater. Long-term weathering rates for base cations calculated from analyses of soil profile horizons using Zr as an internal, immobile, index element are similar for alpine podzols and peaty podzols and are 2–3 meq.m−2.a−1 for Ca and Mg, and 10–11 meq.m−2.a−1 for K and Na. The high loss of Na is associated with the weathering of oligoclase, particularly in the coarse sand fraction. Loss of K is related to weathering of K-feldspar and micas. Current weathering rates for base cations calculated from input-output budgets are higher than long-term rates by factors of 12, 8 and 3 for Ca, Mg and Na, but lower by a factor of 7 for K probably due to biomass uptake. The higher current overall loss of base cations may be due to increased rates of weathering in recent times but this is not conclusive as there are large uncertainties inherent in both methods of estimation.


Precipitation Biomass Soil Profile Weathering Recent Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. April, R., Newton, R., and Coles, L. T.: 1986, Geol. Soc. Am. Bull. 97, 1232.Google Scholar
  2. Bain, D. C., Mellor, A., and Wilson, M. J.: 1990a, Clay Minerals, 25, 467.Google Scholar
  3. Bain, D. C., Mellor, A., Wilson, M. J., and Duthie, D. M. L.: 1990b, Chemical Geology, 84, 23.Google Scholar
  4. Bouyoucos, G. J.: 1927, Soil Sci. 23, 343.Google Scholar
  5. Bricker, O. P.: 1986, J. Geol. Soc. London, 143, 621.Google Scholar
  6. Chung, F. H.: 1974, J. Appl. Cryst. 7, 519.Google Scholar
  7. Dethier, D. P.: 1988, Earth Surface Processes and Landforms, 13, 321.Google Scholar
  8. Drever, J. I., and Hurcomb, D. R.: 1986, Geology, 14, 221.Google Scholar
  9. Ferrier, R. C., Jenkins, A., Miller, J. D., Walker, T. A. B., and Anderson, H. A.: 1990a, J. Hydrology, 113, 285.Google Scholar
  10. Ferrier, R. C., Walker, T. A. B., Harriman, R., Miller, J. D., and Anderson, H. A.: 1990b, J. Hydrology, 113, 251.Google Scholar
  11. Frogner, T.: 1990, Geochim. Cosmochim. Acta, 54, 769.Google Scholar
  12. Harrison, T. N.: 1987, The Evolution of the Eastern Grampian Granites, Ph. D. thesis, Univ. Aberdeen.Google Scholar
  13. Harrison, T. N.: 1988, Mineral Mag. 52, 659.Google Scholar
  14. Jacks, G.: 1990, The Surface Waters Acidification Programme, Cambridge Univ. Press, p. 215.Google Scholar
  15. Kamineni, D. C.: 1987, Geol. Assoc. Canada Spec. Pap. 33, 69.Google Scholar
  16. Katz, B. G.: 1989, Hydrological Processes, 3, 185.Google Scholar
  17. Katz, B. G., Bricker, O. P. and Kennedy, M. M.: 1985, Am. J. Sci., 285, 931.Google Scholar
  18. Kirkwood, D. E., and Nesbitt, H. W.: 1991, Geochim. Cosmochim, Acta, 55, 1295.Google Scholar
  19. Likens, G. E., Bormann, F. H., Pierce, R. S., Eaton, J. S., and Johnson, N. M.: 1977, Biogeochemistry of a Forested Ecosystem, Springer, New York, 146pp.Google Scholar
  20. Mast, M. A., Drever, J. I., and Baron, J.: 1990, Water Resources Research, 26, 2971.Google Scholar
  21. Mellor, A., and Wilson, M. J.: 1989, Arc. Alpine Res. 21, 417.Google Scholar
  22. Nolan, A., Lilly, A., and Robertson, J. S.: 1985, Surface Water Acidification Programme: the Soils of the Allt a Mharcaidh Catchment, Macaulay Institute for Soil Research, Aberdeen (restricted circulation).Google Scholar
  23. Norrish, K., and Hutton, J. T.: 1969, Geochim. Cosmochim, Acta, 33, 431.Google Scholar
  24. Olsson, M. and Melkerud, P. A.: 1989, Geoderma, 45, 267.Google Scholar
  25. Olsson, M., and Melkerud, P. A.: 1991, ‘Determination of Weathering Rates based on Geochemical Properties of the Soil’, in E Pulkkinen (ed.) Environmental Geochemistry in Northern Europe, Geol. Surv. Finland Spec. Pap. 9, p.69.Google Scholar
  26. Pačes, T.: 1983, Geochim. Cosmochim. Acta, 47, 1855.Google Scholar
  27. Pačes, T.: 1986, J. Geol. Soc. London, 143, 673.Google Scholar
  28. Peters, T.: 1986, Contr. Min. Pet. 94, 272.Google Scholar
  29. Scott, R. O., Mitchell, R. L., and Purves, D.: 1971, Spectrochemical Methods for the Analysis of Soils, Plants and other Agricultural Materials, Macaulay Institute for Soil Research, Aberdeen.Google Scholar
  30. Sissons, J. B.: 1976, The Geomorphology of the British Isles. Scotland, Methuen, London, p. 88.Google Scholar
  31. Soil Survey of Scotland: 1984, Organisation and Methods: Soil and Land Capability for Agriculture 1–250,000 Soil Survey, Macaulay Institute for Soil Research, Aberdeen.Google Scholar
  32. Sverdrup, H., and Warfvinge, P.: 1988, Water, Air and Soil Pollution, 38, 387.Google Scholar
  33. Taylor, A. B., and Velbel, M. A.: 1991, Geoderma, 51, 29.Google Scholar
  34. Terashima, S. and Ishihara, S.: 1980, J. Jap. Assoc. Mineralogists, Petrologists and Economic Geologists, 75, 62.Google Scholar
  35. Velbel, M. A.: 1985, Am. J. Sci., 285, 904.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • D. C. Bain
    • 1
  • A. Mellor
    • 1
  • M. J. Wilson
    • 1
  • D. M. L. Duthie
    • 1
  1. 1.The Macaulay Land Use Research InstituteCraigiebuckler

Personalised recommendations