Advertisement

Water, Air, and Soil Pollution

, Volume 85, Issue 3, pp 1101–1106 | Cite as

Modelling the response of terrestrial ecosystems to acidification and desiccation scenarios

  • J. Kros
  • G. J. Reinds
  • W. De Vries
  • J. B. Latour
  • M. Bollen
Part I Soil Acidification Including Nutrient Imbalances

Abstract

Changes in vegetation are often caused by changes in abiotic site factors, such as pH, nitrogen availability and soil moisture. It has been recognized that abiotic site factors are affected by atmospheric deposition and groundwater-table changes. In order to evaluate the effects of eutrophication, acidification and desiccation on site factors, the model SMART2 has been developed. For the Netherlands combinations of two acidification and two seepage scenarios (1990–2050) were evaluated with SMART2. The results are focused on pH, nitrogen availability and base saturation. Calculations were made for combinations of five vegetation structures on seven soil types and the five groundwater-table classes, using a 1 km2 grid. Results showed that deposition reductions lead to a relatively fast improvement of the site factors, increase in pH and base saturation and decrease in N availability. Whereas a reduction in groundwater abstractions of 25% has little or no effect on the pH and N availability.

Keywords

Modelling Soil Acidification Vegetation Changes National Assessment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous: 1985, De Nederlandse Bosstatistiek. Deel 1 De oppervlakte bos van 1980 to 1983, Den Haag, Centraal Bureau voor de Statistiek, Staatsdrukkerij.Google Scholar
  2. De Vries, W., M. Posch and J. Kämäri: 1989, ‘Simulation of the long-term soil response to acid deposition in various buffer ranges’, Water, Air and Soil Pollut. 48, 349–390.Google Scholar
  3. Ellenberg, H., H.E. Weber, R. Dull, V. Wirth, W. Werner and D. Paulissen: 1991, Indicator values of plants in Central Europe, Erich Goltze, Göttingen.Google Scholar
  4. Erisman, J.W.: 1991, Acid deposition in the Netherlands, Bilthoven, RIVM Report nr. 723001002.Google Scholar
  5. Kros, J., Reinds, G.J., De Vries, W., Latour, J.B. and Bollen, M.: 1995, Modelling of soil acidity and nitrogen availability in natural ecosystems in response to changes in acid deposition and hydrology, Wageningen, SC-DLO Report 95.Google Scholar
  6. Latour, J.B. and R. Reiling: 1993, ‘MOVE: a multiple-stress model for vegetation’, Sci. Tot. Environ. Supplement, 1513–1526.Google Scholar
  7. Latour, J.B., Reiling, R. and Slooff, W.: 1994, ‘Ecological standards for eutrophication and desiccation: perspectives for risk assessment’, Water, Air and Soil Pollut. 78, 265–277.Google Scholar
  8. Loopstra, I.L. and Van der Maarel, E.: 1984, Toetsing van de ecologische soortengroepen in de Nederlandse flora aan het systeem van indicatiewaarden volgens Ellenberg, De Dorschkamp, Wageningen, report no. 381.Google Scholar
  9. Pastoors, M.J.H., 1993, Landelijk grondwater model; conceptuele modelbeschrijving — Onderzoek effecten grondwaterwinning 10, Bilthoven, RIVM report 714305004.Google Scholar
  10. Thunnissen, H.A.M., Olthof, R., Getz, P. and Vels, L.: 1992, Grondgebruiksdatabank van Nederland vervaardigd met behulp van Landsat Thematic Mapper opnamen, Wageningen, SC-DLO rapport 168.Google Scholar
  11. Wiertz, J., Van Dijk, J. and Latour, J.B.: 1992, De MOVE-vegetatie module: De kans op voorkomen van 700 plantesoorten als functie van vocht, pH, nutrienten en zout., IBN-DLO/RIVM, Wageningen/Bilthoven, report no. IBN 92/24; RIVM 711901006.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • J. Kros
    • 1
  • G. J. Reinds
    • 1
  • W. De Vries
    • 1
  • J. B. Latour
    • 2
  • M. Bollen
    • 2
  1. 1.DLO Winand Staring Centre for Integrated Land, Soil, and Water ResearchAC WageningenNetherlands
  2. 2.National Institute of Public Health and Environmental ProtectionNetherlands

Personalised recommendations