Water, Air, and Soil Pollution

, Volume 64, Issue 1–2, pp 327–344 | Cite as

Changes in C storage by terrestrial ecosystems: How C-N interactions restrict responses to CO2 and temperature

  • E. B. Rastetter
  • R. B. McKANE
  • G. R. Shaver
  • J. M. Melillo
Part IV Modeling Carbon Fluxes

Abstract

A general model of ecosystem biogeochemistry was used to examine the responses of arctic tundra and temperate hardwood forests to a doubling of CO2 concentration and to a 5°C increase in average growing season temperature. The amount of C stored in both ecosystems increased with both increased CO2 and temperature. Under increased CO2, the increase in C storage was due to increases in the C∶N ratio of both vegetation and soils. Under increased temperature, the increased C storage in the forest was due to a shift in N from soils (with low C∶N ratios) to vegetation (with high C∶N ratios). In the tundra, both a shift in N from soils to vegetation and an increase in C∶N ratios contributed to increased C storage under higher temperatures. Neither ecosystem sequestered N from external sources because the supply rate was low.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber, J.D., J.M. Melillo, C.A. McClaugherty, and K.N. Eshleman. 1983. Potential sinks for mineralized nitrogen following disturbance in forest ecosystems. Ecological Bulletins (Stockholm) 35: 179–192.Google Scholar
  2. Aber, J. D., J. M. Melillo, K. J. Nadelhoffer, J. Pastor, and R. D. Boone. 1991. Factors controlling nitrogen cycling and nitrogen saturation in northern temperate forest ecosystems. Ecological Applications 1:303–315.Google Scholar
  3. Aerts, R., and F. Berendse. 1989. An analysis of competition in heathland ecosystems. I. Competition for nutrients. Chapter 9 in R. Aerts (ed.) Plant Strategies and Nutrient Cycling in Heathland Ecosystems. Foundation for Fundamental Biological Research, Netherlands Organization for Scientific Research, The Netherlands.Google Scholar
  4. Anderson, D.W. 1988. The effect of parent material and soil development on nutrient cycling in temperate ecosystems. Biogeochemistry 5:71–97.Google Scholar
  5. Anderson, J.M. 1991. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecological Applications 1:326–347.Google Scholar
  6. Bazzaz, F.A. 1990. The response of natural ecosystems to the rising global CO2 levels. Annual Reviews of Ecology and Systematics 21:167–196.Google Scholar
  7. Berendse, F. 1990. Organic matter accumulation during secondary succession in heathland ecosystems. Journal of Ecology 8:413–427.Google Scholar
  8. Berendse, F., H. Oudhof, and J. Bol. 1987. A comparative study on nutrient cycling in wet heathland ecosystems. Oecologia (Berlin) 74:174–184.Google Scholar
  9. Berendse, F.-, R. Robbink, and G. Rouwenhorst. 1989. A comparative study on nutrient cycling in wet heathland ecosystems: II. Litter decomposition and nutrient mineralization. Oecologia 78:338–348.Google Scholar
  10. Billings, W. D., J. O. Luken, D. A. Mortensen and K. M. Peterson. 1982. Arctic tundra: A source or sink for atmospheric carbon dioxide in a changing environment? Oecologia 53:7–11.Google Scholar
  11. Billings, W. D., K. M. Peterson, J. O. Luken and D. A. Mortensen. 1984. Interaction of increasing atmospheric carbon dioxide and soil nitrogen on the carbon balance of tundra microcosms. Oecologia 65:26–29.Google Scholar
  12. Bolin, B. and R. B. Cook (eds). 1983. The Major Biogeochemical Cycles and Their Interactions. John Wiley and Sons, Chichester, 532 pp.Google Scholar
  13. Bormann, F. H., and G. E. Likens. 1979. Pattern and Process in a Forested Ecosystem. Springer-Verlag, New York.Google Scholar
  14. Chapin, F. S. III, P. C. Miller, W. D. Billings, and P. I. Coyne 1980. Carbon and nutrient budgets and their control in coastal tundra. Pages 458–484 in J. Brown, P. C. Miller, L. Tieszen, and F. L. Bunnell (eds.) An Arctic Ecosystem: The Coastal Tundra at Barrow Alaska. Dowden, Hutchinson, and Ross. Stroudsburg, PA.Google Scholar
  15. Chapin, F. S. III, and G. R. Shaver. 1985. The physiological ecology of arctic plants. Pages 16–40 in B. Chabot and H. A. Mooney (eds.), Physiological Ecology of North American Plant Communities. Chapman and Hall, London.Google Scholar
  16. Drake, B. G., P. W. Leadly, W. Arp, P. S. Curtis, and D. Whigham. 1989. The effect of elevated atmospheric CO2 on C3 and C4 vegetation on Chesapeake Bay. Proceedings of the Symposium on the Physiological Ecology of Aquatic Plants. Aarhus, Denmark.Google Scholar
  17. Fisher, S., L. Gray, N. Grimm and D. Busch. 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecol. Monogr 52:93–110.Google Scholar
  18. Gates, D. M. 1985. Global biospheric response to increased atmospheric carbon dioxide concentration. Pages 174–184 in B. R. Strain and J. D. Cure (eds), Direct Effects of Increased Carbon Dioxide on Vegetation. U. S. Dept. Energy, Washington D. C.Google Scholar
  19. Giblin, A.E., K.J. Nadelhoffer, G.R. Shaver, J.A. Laundre, and A.J. McKerrow. 1991. Biogeochemical diversity along a riverside toposequence in Arctic Alaska. Ecological Monographs 61 (4):415–435.Google Scholar
  20. Hobbie, J. E., J. Cole, J. Dungan, R. A. Houghton, and B. Peterson. 1984. Role of biota in global CO2 balance: The controversy. BioScience 34:492–498.Google Scholar
  21. Idso, S. B. 1986. Industrial age leading to the greening of the earth? Nature 320:22.Google Scholar
  22. Idso, S. B. 1989. Carbon dioxide, soil moisture, and future crop production. Soil Science 147:305–307.Google Scholar
  23. Kramer, P. J. 1981. Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience 31:29–33.Google Scholar
  24. McClaugherty, C. A., J. D. Aber, and J. M. Melillo. 1982. The role of fine roots in the organic matter and nitrogen budgets of two forested ecosystems. Ecology 63:1481–1490.Google Scholar
  25. Melillo, J. M., T. V. Callaghan, F. I. Woodward, E. Salati, and S. K. Sinha. 1990. Effects on Ecosystems. Pages 282–310 in J. T. Houghton, G. J. Jenkins, and J. J. Ephraums (eds), Climate Change: the IPCC Scientific Assessment. Cambridge University Press, Cambridge.Google Scholar
  26. Melillo, J. M., and J. R. Gosz. 1983. Interactions of the biogeochemical cycles in forest ecosystems. Pages 177–222 in B. Bolin and R. B. Cook (eds) The Major Biogeochemical Cycles and Their Interactions. John Wiley and Sons, New York.Google Scholar
  27. Mitchell, H. L. and R. F. Chandler. 1939. The nitrogen nutrition and growth of certain deciduous trees of the northeastern United States. Black Rock Forest Bull. 11.Google Scholar
  28. Parton, W.J., J. W. B. Stewart, and C. V. Cole. 1988. Dynamics of C, N, P, and S in grassland soils: A model. Biogeochemistry 5:109–131.Google Scholar
  29. Peterson, B. J., and J. M. Melillo. 1985. The potential storage of carbon caused by eutrophication of the biosphere. Tellus 37B:117–127.Google Scholar
  30. Raich, J. W., E. B. Rastetter, J. M. Melillo, D. W. Kicklighter, P. A. Steudler, B. J. Peterson, A. L. Grace, B. Moore, and C. J. Vorosmarty. 1991. Potential net primary productivity in South America: Application of a global model. Ecological Applications 1:399–429.Google Scholar
  31. Rastetter, E. B., M. G. Ryan, G. R. Shaver, J. M. Melillo, K. J. Nadelhoffer, J. E. Hobbie, and J. D. Aber. 1991. A general model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2, climate, and N deposition. Tree Physiology 9:101–126.Google Scholar
  32. Rastetter, E. B., and G. R. Shaver. 1992. A model of multiple element limitation for acclimating vegetation. Ecology 73, in press.Google Scholar
  33. Shaver, G. R., W. D. Billings, F. S. Chapin, A. E. Giblin, K. J. Nadelhoffer, W. C. Oechel, and E. B. Rastetter. 1992. Global change and the carbon balance of arctic ecosystems. BioScience, in press.Google Scholar
  34. Shaver, G.R. and F.S. Chapin, III. 1991. Production:biomass relationships and element cycling in contrasting arctic vegetation types. Ecological Monographs 61 (1):1–31.Google Scholar
  35. Shaver, G. R., F. S. Chapin, and B. L. Gartner. 1986. Factors limiting seasonal growth and peak biomass accumulation in Eriophorum vaginatum in Alaskan tussock tundra. Journal of Ecology 74:257–278.Google Scholar
  36. Shaver, G.R., K.J. Nadelhoffer, and A.E. Giblin. 1990. Biogeochemical diversity and element transport in a heterogeneous landscape, the North Slope of Alaska. Pages 105–125 in M.G. Turner and R.H. Gardner (eds.), Quantitative Methods in Landscape Ecology. Springer-Verlag, New York, New York, USA.Google Scholar
  37. Strain, B. R., and F. A. Bazzaz. 1983. Terrestrial plant communities. Pages 177–222 in E. R. Lemon (ed), CO2, and Plants: The response of Plants to Rising Levels of Atmospheric Carbon Dioxide. Westview Press, BoulderGoogle Scholar
  38. Strain, B. R., and J. D. Cure (eds). 1985. Direct Effects of Increasing Carbon Dioxide on Vegetation. U. S. Dept. Energy, Washington D.C.Google Scholar
  39. Strain, B. R., and J. D. Cure. 1986. Direct Effects of Atmospheric CO2 Enrichment on Plants and Ecosystems: A Bibliography with Abstracts. U. S. Dept. Energy, Washington D.C.Google Scholar
  40. Tans, P. P., I. Y. Fung, and T. Takahashi. 1990. Latitudinal distribution of sources and sinks of atmospheric carbon dioxide. J. Geophys. Res. 94:5151–5172.Google Scholar
  41. Tissue, D.T., and W.C. Oechel. 1987. Response of Eriophorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra. Ecology 68:401–410.Google Scholar
  42. Vitousek, P., T. Fahey, D. Johnson and M. Swift. 1988. Element interactions in forest ecosystems: Succession, allometry and inputoutput budgets. Biogeochemistry 5:7–34.Google Scholar
  43. Vitousek, P. M. and W. A. Reiners. 1975. Ecosystem succession and nutrient retention: A hypothesis. BioScience 25:376–381.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • E. B. Rastetter
    • 1
  • R. B. McKANE
    • 1
  • G. R. Shaver
    • 1
  • J. M. Melillo
    • 1
  1. 1.Marine Biological LaboratoryThe Ecosystems CenterMassachusettsUSA

Personalised recommendations