Advertisement

Chemistry of Heterocyclic Compounds

, Volume 24, Issue 3, pp 290–294 | Cite as

Synthesis of phenoxypyridines under phase transfer catalysis conditions

  • é. M. Abele
  • Yu. Sh. Gol'dberg
  • M. P. Gavars
  • A. P. Gaukhman
  • M. V. Shimanskaya
Article

Abstract

Reactions of halopyridines with alkali metal phenoxides in a two phase liquid-solid catalytic system, rather than in a liquid-liquid phase transfer catalytic system, make it possible to prepare 2-, 3-, and 4-phenoxypyridines from unactivated bromo- or chloropyridines and 2-chloropicolines. In polyhalogenated pyridines only α- and γ-halogen atoms undergo substitution. 7, 8-Dibromo-6-azaphenoxane has been prepared by the reaction of 2,3,5,6-tetrabromopyridine with the dipotassium salt of pyrocatechol.

Keywords

Organic Chemistry Catalysis Pyridine Alkali Metal Catalytic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    L. A. Yanovskaya and S. S. Yufit, Organic Synthesis in Two-Phase Systems [in Russian], Khimiya, Moscow (1982).Google Scholar
  2. 2.
    H. Alsaidi, R. Gallo, and J. Metzger, Synthesis, No. 11, 921 (1980).Google Scholar
  3. 3.
    E. V. Dehmlow and S. S. Dehmlow, Phase Transfer Catalysis, Verlag Chemie, Weinheim (1980), p. 54.Google Scholar
  4. 4.
    K. D. Pedersen and Kh. K. Frensdorf, Usp. Khim., 42, 492 (1973).Google Scholar
  5. 5.
    S. L. Regen, Angew. Chem. Int. Ed., Engl., 18, 421 (1979).Google Scholar
  6. 6.
    J. Barry, G. Bram, G. Decodts, A. Loupy, P. Pigeon, and J. Sansoulet, Tetrahedron, 39, 2669 (1983).Google Scholar
  7. 7.
    G. Bram, A. Loupy, and M. Pedoussaut, Bull. Soc. Chim. France, No. 1, 124 (1986).Google Scholar
  8. 8.
    G. R. Clemo, B. W. Fox, and R. Raper, J. Chem. Soc., 2693 (1954).Google Scholar
  9. 9.
    R. R. Renshaw and R. C. Conn, J. Am. Chem. Soc., 59, 297 (1937).Google Scholar
  10. 10.
    R. A. Abramovitch and A. J. Newman, Jr., J. Org. Chem., 39, 2690 (1974).Google Scholar
  11. 11.
    Weigand-Hilgertas, Experimental Methods in Organic Chemistry [Russian translation], Khimiya, Moscow (1968), p. 252.Google Scholar
  12. 12.
    J. P. Wibaut and H. M. Wagtendonk, Rec. Trav. Chim. Pays-Bas., 60, 22 (1941).Google Scholar
  13. 13.
    I. Collins and H. Suschitzky, J. Chem. Soc., C, No. 11, 1523 (1970).Google Scholar
  14. 14.
    H. J. den Hertog and J. P. Wibaut, Rec. Trav. Chim. Pays-Bas., 51, 940 (1932).Google Scholar
  15. 15.
    V. D. Parker, US Patent No. 3,694,332; C. A., 77, 164,492 (1972).Google Scholar
  16. 16.
    S. D. Moschitskii, G. A. Zalesskii, and V. P. Kukhar', Khim. Geterotsikl. Soedin., No. 7, 915 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • é. M. Abele
    • 1
  • Yu. Sh. Gol'dberg
    • 1
  • M. P. Gavars
    • 1
  • A. P. Gaukhman
    • 1
  • M. V. Shimanskaya
    • 1
  1. 1.Institute of Organic SynthesisAcademy of Sciences of the Latvian SSRRiga

Personalised recommendations