Skip to main content
Log in

Elemental depth profile analysis of hard coatings of tungsten carbide by auger electron (AES-) microprobe/sputtering

Element-Tiefenprofilanalyse von Hartstoffschichten aus Wolframcarbid durch Auger-Elektronen-(AES-)Mikrosonde/Ionenzerstäuben

  • Original Papers
  • Published:
Fresenius' Zeitschrift für analytische Chemie Aims and scope Submit manuscript

Zusammenfassung

Technische CVD-Hartstoffbeschichtungen zum Verschleißschutz aus 8 bis 15 μm dicken Wolframcarbidschichten auf Stahl wurden mit Auger-Elektronen-Spektrometrie (AES)/Ionenätzen untersucht. Dem Problem der Analyse des Carbid-Signals, das allgemein in der Dünnschichtanalyse durch zufällige, allgegenwärtige Kohlenstoffbelegungen gestört wird, wurde besondere Aufmerksamkeit gewidmet. Halbquantitative AES-Tiefenprofile von W, C, Fe, Cr, O zeigten reproduzierbar charakteristische Unterschiede zwischen Proben, die unter verschiedenen Beschichtungsbedingungen hergestellt worden waren, sowie solchen mit guter bzw. schlechter Haftung auf dem Grundmaterial. Durch den Einsatz der Auger-Mikrosonde wurden trotz starker Probenaufrauhung auch nach Abtrag dicker Schichten > 10 μm durch Ionenzerstäuben gute Tiefenauflösungen von 0,5 bis 1 μm in der Größe der ursprünglichen Probenrauheit erhalten.

Der Einsatz von Standard-Dünnschichtmaterialien, die zuvor durch eine Kombination verschiedener dünnschichtanalytischer Methoden umfassend charakterisiert wurden, wird als eine Möglichkeit diskutiert, die Richtigkeit der quantitativen Dünnschichtanalyse derartiger technischer Beschichtungen zu verbessern.

Summary

Technological wear-resistant hard coatings prepared by chemical vapour deposition (CVD) of 8 to 15 μm tungsten carbide on steel, were studied by Auger electron spectrometry (AES)/sputtering. Special regard was given to the problem of the analysis of the carbide signal, which is interfered in surface thin-film analysis, in general, by adventitious, ubiquitous carbon overlayers. Semiquantitative AES in-depth profiles of W, C, Fe, Cr, O reproducibly showed characteristic differences between samples from different coating processings and those with good and bad coating/base adhesion, respectively. Although strong sputter-induced roughening occurred, quite acceptable depth resolution of the order of initial sample roughness of 0.5 to 1 μm was obtained by means of the Auger microprobe even after sputter removal of thick layers > 10 μm.

Standard thin-film materials, well-characterized by a combined approach using different complementary thinfilm analytical methods, are discussed as a means to improve accuracy of quantitative in-depth analysis of such rough technological coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wood EG, Cubberly WH, Stedfeld RL (eds) (1981) Surface cleaning, finishing, and coating; Metals handbook, vol 5, 9th edn. American Society for Metals, Metals Park/Ohio, pp 361–426

    Google Scholar 

  2. Quinn TFJ (1984) Wear 100:399–436

    Google Scholar 

  3. Fischmeister H (ed) (1980) Surface problems in materials science and technology; Mat Sci Eng, vol 42. Elsevier, Lausanne

    Google Scholar 

  4. Stingeder G, Wilhartitz P, Schreiner M, Grasserbauer M (1984) Fresenius Z Anal Chem 319:787–794

    Google Scholar 

  5. Viefhaus H, Peters J, Grabke HJ (1984) Fresenius Z Anal Chem 319:595–596 and (1986) Surface Interface Anal, to be published

    Google Scholar 

  6. Rie K-T, Lampe T (1985) Mat Sci Eng 69:473–481

    Google Scholar 

  7. Matsumoto O, Kanzaki Y (1985) J Less-Common Met 107:259–265

    Google Scholar 

  8. Kool WM, Mittemeijer EJ, Schalkoord D (1981) Mikrochim Acta Suppl 9:349–372

    Google Scholar 

  9. Finberg I, Avni R, Grill A, Spalvins T, Buckley DH (1985) Mat Lett 3:187–190

    Google Scholar 

  10. Dodd CG, Meeker GP, Baumann SM, Norber JC, Legg KO (1985) Nucl Instrum Methods B 7/8:219–227

    Google Scholar 

  11. Pollock JTA, Scott MD, Kenny MJ, Paterson PJK, Veitch CJ (1985) Appl Surface Sci 22/23:128–135

    Google Scholar 

  12. Ingram DC (1985) Nucl Instrum Methods B 12:161–169

    Google Scholar 

  13. Hubler GK (1981) Nucl Instrum Methods 191:101–113

    Google Scholar 

  14. Wolf GK, Grant WA, Procter RM (eds) (1985) Proc Int Conf Surface Modification of Metals by Ion Beams, Heidelberg, Sept. 1984; Mat Sci Eng 69:1–552

  15. Payling R, Mercer PD (1985) Appl Surface Sci 22/23:224–235

    Google Scholar 

  16. Thien V, Schmitz F, Slotty W, Voss W (1984) Fresenius Z Anal Chem 319:646–654

    Google Scholar 

  17. Bubert H, Garten RPH, Klockenkämper R, Puderbach H (1983) Microchim Acta, Suppl 10:145–158

    Google Scholar 

  18. Anderson DG, Vandeberg JT (1985) Anal Chem 57:15R-29R

    Google Scholar 

  19. Kny E, Grasserbauer M, Wilhartitz P, Stingeder G, Goretzki H (1984) Fresenius Z Anal Chem 317:782–787

    Google Scholar 

  20. Stingeder G, Grasserbauer M, Ortner HM, Schintlmeister W, Wallgram W (1983) Mikrochim Acta, Suppl 10:93–102; Fresenius Z Anal Chem 314:340–345

    Google Scholar 

  21. Klar E, Cubberly WH, Stedfeld RL (1984) Powder metallurgy; Metals handbook, vol 7, 9th edn. American Society for Metals, Metals Park/Ohio, pp 765–779

    Google Scholar 

  22. Ahlborn H, Ehrhardt J, Scharwächter R (1971) Industrieanzeiger 21:H. 1 März

  23. Helmersson U, Johannson BO, Sundgren JE, Hentzell HTG, Billgren P (1985) J Vacuum Sci Technol A 3:308–315

    Google Scholar 

  24. Göbel J (1984) Fresenius Z Anal Chem 319:771–776

    Google Scholar 

  25. Etzkorn H-W, Hantsche H, Steiniger H (1984) Fresenius Z Anal Chem 319:777–783

    Google Scholar 

  26. Farkas D, Singer IL, Rangaswamy M (1985) J Appl Phys 57:1114–1120

    Google Scholar 

  27. Guzman L, Borgese A (1985) Mat Sci Eng 69:289–295

    Google Scholar 

  28. Weisser W (1982) Untersuchung über das Verhalten dünner Hartstoffschichten auf duktilem Basiswerkstoff bei mechanischer Belastung; DFG-Bericht SCHI 163/3

  29. Archer KJ, Yee KK (1978) Wear 48:237–250

    Google Scholar 

  30. Koch KH (1985) Fresenius Z Anal Chem 322:124–129

    Google Scholar 

  31. Bhushan B, Davis RE, Kolar HR (1985) Thin Solid Films 123:113–126

    Google Scholar 

  32. Hofmann S (1985) Proc Eur Conf on Application of Surface and Interface Analysis, ECASIA 85, Veldhoven/NL; to be published in Surface Interface Anal (1986)

  33. Baer DR (1985) Appl Surface Sci 20:382–396

    Google Scholar 

  34. Werner HW, Garten RPH (1984) Rep Progr Phys 47:221–344

    Google Scholar 

  35. Werner HW (1984) In: Oechsner H (ed) Thin film and depth profile analysis. Springer, Berlin Heidelberg New York, pp 5–38

    Google Scholar 

  36. de Vries JE, Riley TL, Holubka JW, Dickie RA (1985) Surface Interface Anal 7:111–116

    Google Scholar 

  37. Janssen E (1981) Mikrochim Acta, Suppl 9:221–254

    Google Scholar 

  38. Briggs D (1983) In: Briggs D, Seah MP (eds) Practical surface analysis. J Wiley, Chichester New York Brisbane, pp 359–396

    Google Scholar 

  39. Gettings M, Kinloch AJ (1979) Surface Interface Anal 1:189–195

    Google Scholar 

  40. Tarng ML, Fischer DG (1978) J Vacuum Sci Technol 15:50–53

    Google Scholar 

  41. Schmidt M, te Kaat E, Bubert H, Garten RPH (1984) Fresenius Z Anal Chem 319:616–621

    Google Scholar 

  42. Walls JM, Brown IK, Hall DD (1983) Appl Surface Sci 15:93–107

    Google Scholar 

  43. Hofmann S (1983) In: Briggs D, Seah MP (eds) Practical surface analysis. J Wiley, Chichester New York Brisbane, pp 141–180

    Google Scholar 

  44. Hofmann S (1980) Surface Interface Anal 2:148–160

    Google Scholar 

  45. Darque-Ceretti E, Delamare F, Blaise G (1985) Surface Interface Anal 7:141–149

    Google Scholar 

  46. Davis LE, MacDonald NC, Palmberg PW, Riach GE, Weber RE (1976) Handbook of Auger electron spectroscopy, 2nd edn. Perkin Elmer Corporation, Eden, Prairie/MN

    Google Scholar 

  47. Mathieu HJ (1984) In: Oechsner H (ed) Thin film and depth profile analysis. Springer, Berlin Heidelberg New York, pp 39–61

    Google Scholar 

  48. Payling R (1985) Appl Surface Sci 22/23:215–223

    Google Scholar 

  49. Seah MP (1983) In: Briggs D, Seah MP (eds) Practical surface analysis. J Wiley, Chichester New York Brisbane, pp 181–216

    Google Scholar 

  50. Sekine T, Hirata K, Mogami A (1983) Surface Sci 125:565–574

    Google Scholar 

  51. Bubert H (1983) Fresenius Z Anal Chem 314:237–241

    Google Scholar 

  52. Hirokawa K, Suzuki S, Oku M, Kimura H (1985) J Electron Sprectrosc Relat Phenom 35:319–326

    Google Scholar 

  53. Craig S, Harding GL, Payling R (1983) Surface Sci 124:591–601

    Google Scholar 

  54. Haas TW, Grant JT, Dooley GJ (1972) J Appl Phys 43:1853–1860

    Google Scholar 

  55. Ramaker DE (1985) Appl Surface Sci 21:243–267

    Google Scholar 

  56. Weissmann R, Müller K (1981) Surface Sci Rep 105:251–309

    Google Scholar 

  57. Carter G, Navinšek B, Whitton JL (1983) In: Behrisch R (ed) Sputtering by particle bombardment, II. Topics in appl. phys., vol 52. Springer, Berlin Heidelberg New York, pp 231–269

    Google Scholar 

  58. Werner HW (1980) Mat Sci Eng 42:1–12

    Google Scholar 

  59. Zalar A (1985) Thin Solid Films 124:223–230

    Google Scholar 

  60. Wu OKT, Peterson GG, La Rocca WJ, Butler EM (1982) Appl Surface Sci 11/12:118–130

    Google Scholar 

  61. Keenlyside M, Stott FH, Wood GC (1981) Vacuum 31:631–635

    Google Scholar 

  62. Puderbach H, Bubert H, Quentmeier A, Garten RPH, Storp S (1985) Mikrochim Acta, Suppl 11:103–112

    Google Scholar 

  63. Sigmund P (1981) In: Behrisch R (ed) Sputtering by particle bombardment, I. Topics in appl. phys., vol 47. Springer, Berlin Heidelberg New York, pp 9–71

    Google Scholar 

  64. Andersen HH, Bay HL (1981) In: Behrisch R (ed) Sputtering by particle bombardment, I. Topics in appl. phys., vol 47. Springer, Berlin Heidelberg New York, pp 145–218

    Google Scholar 

  65. Betz G, Wehner GK (1983) In: Behrisch R (ed) Sputtering by particle bombardment, II. Topics in appl. phys., vol 52. Springer, Berlin Heidelberg New York, pp 11–90

    Google Scholar 

  66. Taglauer E (1982) Appl Surface Sci 13:80–93

    Google Scholar 

  67. Rath J, Bohdansky J, Martinelli AP (1980) Radiat Eff 48:213–220

    Google Scholar 

  68. Werner HW, Warmoltz N (1976) Surface Sci 57:706–714

    Google Scholar 

  69. Seah MP, Powell CJ (1985) The coordinated development of standards for surface chemical analysis, Report NBSIR 85–3120. Nat. Bureau of Standard Washington D.C., 39 pp

  70. Kudo T, Ishikawa A, Kawamura G, Okamoto H (1985) J Electrochem Soc 132:1814–1819

    Google Scholar 

  71. Kojima I, Miyazaki E, Inoue Y, Yasumori I (1985) Bull Chem Soc Jpn 58:611–617

    Google Scholar 

  72. Leleyter M, Joyes P (1985) Surface Sci 156:800–813

    Google Scholar 

  73. Gosset CR (1981) Nucl Instrum Method 191:335–340

    Google Scholar 

  74. Borders JA, Harris JM (1978) Nucl Instrum Methods 149:279–284

    Google Scholar 

  75. Chu WK, Mayer JW, Nicolet M-A, Buck TM, Amsel G, Eisen F (1973) Thin Solid Films 17:1–41

    Google Scholar 

  76. Legge GJF (1982) Nucl Instrum Methods 197:243–253

    Google Scholar 

  77. Fine J, Navinšek B (1985) J Vacuum Sci Technol A 3:1408–1412

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. Karl-Heinz König on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garten, R.P.H. Elemental depth profile analysis of hard coatings of tungsten carbide by auger electron (AES-) microprobe/sputtering. Z. Anal. Chem. 324, 111–119 (1986). https://doi.org/10.1007/BF00473349

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00473349

Keywords

Navigation