Chemistry of Heterocyclic Compounds

, Volume 9, Issue 6, pp 705–709 | Cite as

Investigation of the protonation of 5-azaindole derivatives by pmr spectroscopy

  • G. G. Dvoryantseva
  • T. N. Ul'yanova
  • Yu. N. Sheinker
  • L. N. Yakhontov


The protonation of some 5-azaindoles and 5-azaindolines by trifluoroacetic acid in media with different dielectric constants was studied by PMR spectroscopy. Protonation occurs at the nitrogen atom of the pyridine ring. The structures of the monocations of 5-azaindole, 5-azaindoline, and their 1-phenyl derivatives correspond to a considerable contribution of the quinoid structure with transfer of positive charge to the nitrogen atom of the pyrrole fragment of the molecule. On the basis of an investigation of the chemical shifts of the protons of 1-phenyl-5-azaindole and 1-phenyl-5-azaindoline on the trifluoroacetic acid concentration in methylene chloride, acetonitrile, and deuteroacetone, a protonation mechanism in which transfer of a proton from the donor to the acceptor in slightly polar media occurs through the formation of a hydrogen-bonded complex of the base with the acid is proposed.


Pyridine Dielectric Constant Methylene Chloride Nitrogen Atom Pyrrole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. N. Yakhontov, Usp. Khim., 37, 1258 (1968).Google Scholar
  2. 2.
    L. N. Yakhontov, M. Ya. Uritskaya, and M. V. Rubtsov, Zh. Organ. Khim., 1, 2032 (1965).Google Scholar
  3. 3.
    B. D. Batts and E. Spinner, Austr. J. Chem., 22, 2595 (1969).Google Scholar
  4. 4.
    R. A. Abramovitch and J. B. Davis, J. Chem. Soc., B, 1137 (1966).Google Scholar
  5. 5.
    J. C. Smith and W. G. Schneider, Can. J. Chem., 39, 1158 (1966).Google Scholar
  6. 6.
    G. Fraenkel and I. P. Kim, J. Am. Chem. Soc., 88, 4203 (1966).Google Scholar
  7. 7.
    B. D. Batts and E. Spinner, Austr. J. Chem., 22, 2611 (1969).Google Scholar
  8. 8.
    R. J. W. LeFèvre and D. S. N. Murthy, Austr. J. Chem., 23, 193 (1970).Google Scholar
  9. 9.
    W. Brügel, Zeitschrift für Electrochem., 66, 159 (1962).Google Scholar
  10. 10.
    J. W. Ap-Simon, W. J. Craig, P. V. Demarko, D. W. Mathison, L. Lannders, and W. B. Whally, Tetrahedron, 23, 2339 (1967).Google Scholar
  11. 11.
    P. J. Black, P. D. Brown, and M. L. Heffeman, Austr. J. Chem., 20, 1305 (1967).Google Scholar
  12. 12.
    G. M. Barrow, J. Am. Chem. Soc., 78, 22, 5802 (1956).Google Scholar
  13. 13.
    G. V. Gusakova, G. S. Denisov, A. L. Smolyanskii, and V. M. Shraiber, Dokl. Akad. Nauk SSSR, 193, 1065 (1970).Google Scholar
  14. 14.
    G. S. Denisov, G. V. Gusakova, and A. L. Smolyanskii (Smolyansky), Spectro. Lett., 4, No. 7, 237 (1971).Google Scholar
  15. 15.
    L. N. Yakhontov and E. I. Lapan, Khim. Geterotsikl. Soedin., 27 (1970).Google Scholar
  16. 16.
    L. N. Yakhontov, E. I. Lapan, and M. V. Rubtsov, Khim. Geterotsikl. Soedin., 550 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • G. G. Dvoryantseva
    • 1
  • T. N. Ul'yanova
    • 1
  • Yu. N. Sheinker
    • 1
  • L. N. Yakhontov
    • 1
  1. 1.S. Ordzhonikidze All-Union Scientific-Research Pharmaceutical Chemistry InstituteMoscow

Personalised recommendations