Chemistry of Heterocyclic Compounds

, Volume 9, Issue 8, pp 1031–1037 | Cite as

A study of the structure of the cations of n-oxides of monosubstituted pyrazines and quinoxalines by the pmr method

  • T. N. Ul'yanova
  • G. G. Dvoryantseva
  • Yu. N. Sheinker
  • A. S. Elina
  • I. S. Musatova


The dependence of the chemical shifts of the protons on the concentration of D2SO4 in D2O in a number of N-oxides of monosubstituted pyrazines and quinoxalines has been investigated, and the parameters of the PMR spectra of the neutral and the mono- and diprotonated forms of the compounds investigated have been determined. All the pyrazine and quinoxaline N-oxides considered protonate first at the unoxidized nitrogen atom (N4). The first protonation of 2-aminopyrazine 1,4-di-N-oxide takes place at the oxygen atom of the N → O group in position 1, and that of 2-methoxypyrazine at the oxygen atom of the N → O group in position 4. The effect of the delocalization of the positive charge in the monocations of the compounds investigated has been considered.


Oxygen Nitrogen Organic Chemistry Chemical Shift Oxygen Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    T. N. Ul'yanova, G. G. Dvoryantseva, L. M. Alekseeva, Yu. N. Sheinker, and A. S. Elina, Khim. Geterotsikl. Soedin., 846 (1971).Google Scholar
  2. 2.
    M. M. Kazanskii, G. G. Dvoryantseva, and A. S. Elina, Dokl. Akad. Nauk SSSR, 197, 832 (1971).Google Scholar
  3. 3.
    W. Brügel, Z. Electrochem., 66, 159 (1962).Google Scholar
  4. 4.
    R. H. Cox and A. A. Bothner-By, J. Phys. Chem., 72, 1642 (1968); 73, 2469 (1969).Google Scholar
  5. 5.
    G. P. Syrova, Yu. N. Sheinker, I. S. Musatova, and A. S. Elina, Khim. Geterotsikl. Soedin., 266 (1972).Google Scholar
  6. 6.
    S. Castellano and R. Kostelnik, J. Amer. Chem. Soc., 90, 141 (1968).Google Scholar
  7. 7.
    A. G. Moritz and B. D. Paul, Austral. J. Chem., 22, 1305 (1969).Google Scholar
  8. 8.
    S. F. Mason, J. Chem. Soc., 219 (1960).Google Scholar
  9. 9.
    G. W. H. Cheesman, Advan. Heterocyclic Chem., 2, 204 (1963).Google Scholar
  10. 10.
    R. A. Abramovitch and J. B. Davis, J. Chem. Soc., B, 1131 (1966).Google Scholar
  11. 11.
    A. R. Katritzky and J. M. Lagowski, J. Chem. Soc., 43 (1961).Google Scholar
  12. 12.
    B. D. Batts and E. Spinner, Austral. J. Chem., 22, 2595 (1969).Google Scholar
  13. 13.
    E. Spinner, J. Chem. Soc., 3119 (1962).Google Scholar
  14. 14.
    Yu. N. Sheinker and Yu. I. Pomerantsev, Zh. Fiz. Khim., 30, 79 (1956).Google Scholar
  15. 15.
    J. J. W. LeFevre and D. S. N. Murthy, Austral. J. Chem., 23, 193 (1970).Google Scholar
  16. 16.
    J. S. Waugh and R. W. Fessenden, J. Amer. Chem. Soc., 79, 846 (1957).Google Scholar
  17. 17.
    C. E. Johnson and F. A. Bovey, J. Chem. Phys., 29, 1012 (1958).Google Scholar
  18. 18.
    G. G. Hall, A. Hardisson, and L. M. Jackmann, Disc. Faraday Soc., 34, 15 (1962).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • T. N. Ul'yanova
    • 1
  • G. G. Dvoryantseva
    • 1
  • Yu. N. Sheinker
    • 1
  • A. S. Elina
    • 1
  • I. S. Musatova
    • 1
  1. 1.S. Ordzhonikidze All-Union Scientific-Research Institute of Pharmaceutical ChemistryMoscow

Personalised recommendations