Skip to main content
Log in

Analytical inductively coupled plasma spectroscopies — past, present, and future

Analytische Spektroskopie mit induktiv gekoppeltem Plasma — Vergangenheit, Gegenwart und Zukunft

  • Lectures
  • Published:
Fresenius' Zeitschrift für analytische Chemie Aims and scope Submit manuscript

Zusammenfassung

Die analytische Plasmaspektroskopie hat eine breite Entwicklung genommen, denn eine Vielzahl von Plasmen erwies sich als nützlich für analytisch-spektroskopische Anwendungen. Von den heute interessierenden Plasmen haben nur die induktiv gekoppelten ihre Vielseitigkeit und ihre analytische Einsetzbarkeit als Atomisierungszelle für die Atomfluorescenz, als Anregungszelle für die Atomemissions- und als Ionisationszelle für die Massenspektroskopie bewiesen. Diese drei Arten der Beobachtung üben einen Haupteinfluß auf die Elementanalytik aus. Trotz ihres technischen und kommerziellen Erfolges bieten alle drei noch viel Gelegenheit für kreatives Forschen.

Der Hauptantrieb, der hinter den fortgeführten Forschungsanstrengungen steht, ist der Wunsch nach immer größerer Richtigkeit und Präzision, nach noch höherem Nachweisvermögen, nach besseren Mitteln (Geräte und Programme), um Analysen bequemer, zuverlässiger und direkter durchführen zu können und die komplizierte Struktur sowie den Mechanismus des Plasmas selbst in grundlegender Weise besser zu verstehen. Die experimentellen Anordnungen, die benutzt werden, um diese Ziele zu erreichen, werden besprochen und bewertet. Die Anforderungen, die an den Analytiker durch die Natur der Probe und die gewünschte analytische Information gestellt werden, inspirieren ebenfalls zu Neuentwicklungen.

Summary

Plasma analytical spectroscopy now has broad generic implications, because a variety of plasmas have been found useful for spectroscopic analytical applications. Among those of contemporary interest, only the inductively coupled versions have demonstrated their flexibility and analytical merit as atomization cells for atomic flourescence, as excitation cells for atomic emission and as ionization cells for mass spectroscopy. Collectively, these three modes of observation are exerting a major impact on the way elemental analyses are being performed. In spite of their technical and commercial success to date, all three approaches still present many opportunities for creative research. The major driving force behind continuing research efforts is the desire to attain even better accuracy and precision, to achieve even higher powers of detection, to improve the means (hardware and software) for performing analyses with more convenience, confidence and directness, and to better understand the complicated structure and mechanism of the plasma itself on a fundamental level. The experimental approaches being utilized to achieve these goals are reviewed and evaluated. The demands being placed on the analyst by the nature of sample and the analytical information desired is also inspiring the development of major front and back-end innovations. Those innovations that are finding acceptance are critically reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Fassel VA (1972) Proc 16th Coll Spectrosc Int Heidelberg 1971, Plenary Lectures and Reports, Hilger, London, p 63

    Google Scholar 

  2. Wendt R, Fassel VA (1965) Anal Chem 37:920

    Google Scholar 

  3. Montaser A, Fassel VA (1976) Anal Chem 48:1490

    Google Scholar 

  4. Houk RS, Fassel VA, Flesch GD, Gray AL, Taylor CE (1980) Anal Chem 48:2283

    Google Scholar 

  5. Scott FI (Jan 1979) Am Lab, p 105

  6. Howard B (Jan 1980) p 50; (Jan 1981) p 136; (Jan 1982) p 107; (March 1983) p 6

  7. Mosbacher CJ (Feb 1982) Ind Res De p 177; (Feb 1983) p 123

  8. Anonymous (1983) Anal Chem 55:611 A

  9. Laitinen HA (1973) Anal Chem 45:2305

    Google Scholar 

  10. Barnes R (1981) Trends in Anal Chem 1(2):51

    Google Scholar 

  11. Barnes R (1984) ICP Info Newslett 10:364

    Google Scholar 

  12. Carr JW, Blades MW (1984) Spectrochim Acta 39B:567

    Google Scholar 

  13. Uehiro T, Morita M, Fuwa K (1985) Anal Chem 57:1709

    Google Scholar 

  14. Houk R, Fassel VA, LaFreniere BR (1985) Appl Spectrosc (in press)

  15. Epstein MS, Nikdel S, Bradshaw JD, Kosiuski MA, Bower JN, Winefordner JD (1980) Anal Chim Acta 113:221

    Google Scholar 

  16. Uchida H, Kosinski MA, Winefordner JD (1983) Spectrochim Acta 38B:5

    Google Scholar 

  17. Omenetto N, Human HGC, Cavalli P, Rossi G (1984) Spectrochim Acta 39B:115

    Google Scholar 

  18. Omenetto N, Human HGC (1984) Spectrochim Acta 39B:1333

    Google Scholar 

  19. Human HGC, Omenetto N, Cavalli P, Rossi G (1984) Spectrochim Acta 39B:1345

    Google Scholar 

  20. Kosinski MA, Uchida H, Winefordner JD (1983) Anal Chem 55:688

    Google Scholar 

  21. Gray AL (1986) Proc 1985 European Conf on Plasma Spectrochemistry (in press)

  22. Bernett WB, Fassel VA, Kniseley RN (1968) Spectrochim Acta 23B:643; (1970) 25B:139

    Google Scholar 

  23. Lorber A, Goldbart Z (1984) Anal Chem 56:37

    Google Scholar 

  24. Lorber A, Goldbart Z, Eldan M (1984) Anal Chem 56:43

    Google Scholar 

  25. Lorber A (1984) Anal Chem 56:1404

    Google Scholar 

  26. Lorber A, Goldbart Z (1984) Anal Chim Acta 161:163

    Google Scholar 

  27. Ramsey M, Thompson M (1985) Analyst 110:519

    Google Scholar 

  28. Myers SA, Tracy DH (1983) Spectrochim Acta 38B:1227

    Google Scholar 

  29. Schmidt GJ, Slavin W (1982) Anal Chem 54:2491

    Google Scholar 

  30. Uchida H, Nojiri Y, Hariguchi H, Fuwa K (1981) Anal Chim Acta 123:57

    Google Scholar 

  31. Hartenstein SD, Swaiden HM, Christian GD (1983) Analyst 108:1323

    Google Scholar 

  32. Catterick T (1984) Analyst 109:1465

    Google Scholar 

  33. Salin E, Horlick G (1980) Anal Chem 52:1578

    Google Scholar 

  34. Belchamber RM, Horlick G (1982) Spectrochim Acta 37B:1037

    Google Scholar 

  35. Parsons ML, Forster A, Anderson D (1980) An atlas of spectral interferences in ICP spectroscopy. Plenum Press, New York

    Google Scholar 

  36. Harrison GR (1969) Massachusetts Institute of Technology Wavelength Tables, The Technology Press, Cambridge, MA

    Google Scholar 

  37. Boumans PWJM (1980) Line coincidence tables for inductively coupled plasma atomic emission spectroscopy, Vols. I and II. Pergamon, London

    Google Scholar 

  38. Meggers WF, Corliss CH, Scribner BF (1975) Tables of spectral line intensities, Parts 1 and 2, NBS Monograph 145, US Department of Commerce, Washington, DC

    Google Scholar 

  39. Winge RK, Fassel VA, Peterson VJ, Floyd MA (1984) Inductively coupled plasma-atomic emission spectroscopy: An atlas of spectral information. Elsevier, Amsterdam

    Google Scholar 

  40. Greenfield S, Jones IL, Berry CT (1964) Analyst 89:713–720

    Google Scholar 

  41. Greenfield S (1965) Proc Soc Anal Chem 2:111–113

    Google Scholar 

  42. Dickinson GW, Fassel VA (1969) Anal Chem 41:1021–1024

    Google Scholar 

  43. Fassel VA (1972) Hasler award address, Tenth national meeting Society for Applied Spectroscopy, St. Louis, Oct 20, 1971; Paper no. 83, Eleventh national meeting, Society for applied spectroscopy, Dallas, Texas, Sept 14, 1972

  44. Boumans PWJM, de Boer FJ (1975) Spectrochim Acta 30B:309–334

    Google Scholar 

  45. Olson KW, Haas WJ, Fassel VA (1977) Anal Chem 49:632

    Google Scholar 

  46. Faires LM, Bieniewski TM, Apel CT, Niemczyk TM (1985) Appl Spectrosc 39:5

    Google Scholar 

  47. Davies J, Dean JR, Snook RD (1985) Analyst 110:535

    Google Scholar 

  48. Montaser A, Fassel VA (1982) Appl Spectrosc 36:454

    Google Scholar 

  49. Browner RF, Boorn AH (1984) Anal Chem 56:787A

    Google Scholar 

  50. Fassel VA, Bear BR (1985) Spectrochim Acta (in press)

  51. Demers D (1985) Paper no. 459, Eastern Analytical Symposium (1984); reported in ICP Inform Newsl, 10:849

  52. Douglas DJ, Boorn A, Neve N (1985) Proceedings Symposium Instrumentelle Multielement Analyse. Verlag Chemie, Wein-heim

    Google Scholar 

  53. Boumans PWJM, de Boer FJ (1975) Spectrochim Acta 30B:309

    Google Scholar 

  54. Hieftje GM (1983) Spectrochim Acta 38B:1465

    Google Scholar 

  55. Angleys G, Mermet JM (1948) Appl Spectrosc 38:647

    Google Scholar 

  56. Rezaaiyaan R, Hieftje GM (1985) Anal Chem 57:412

    Google Scholar 

  57. Lawrence KE, Rice GW, Fassel VA (1984) Anal Chem 56:289

    Google Scholar 

  58. La Freniere KE, Rice GW, Fassel VA (1985) Spectrochim Acta, 40B:1495

    Google Scholar 

  59. Aziz A, Broekaert JA, Leis F (1982) Spectrochim Acta, Part B, 37B:369

    Google Scholar 

  60. Crabi G, Cavalli P, Achilli M, Rossi G (1982) Omenetto M (1982) At Spectrosc 3:81

    Google Scholar 

  61. Gunn AM, Miliard DL, Kirkbright GF (1978) Analyst 103:1066

    Google Scholar 

  62. Ng KC, Caruso JA (1982) Anal Chim Acta 143:209

    Google Scholar 

  63. Abdullah M, Fuwa K, Haraguchi H (1984) Spectrochim Acta, Part B, 39B:1129

    Google Scholar 

  64. Long SE, Snook RD, Browner RF (1985) Spectrochim Acta 40B:553

    Google Scholar 

  65. Kirkbright GF, Walton SJ (1982) Analyst 107:276

    Google Scholar 

  66. Kirkbright GF, Li-Xing Z (1982) Analyst 107:617

    Google Scholar 

  67. L'vov BV (1984) Spectrochim Acta, 39B:149

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fassel, V.A. Analytical inductively coupled plasma spectroscopies — past, present, and future. Z. Anal. Chem. 324, 511–518 (1986). https://doi.org/10.1007/BF00470406

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00470406

Keywords

Navigation