Chemistry of Heterocyclic Compounds

, Volume 13, Issue 7, pp 764–769 | Cite as

Formation of 3,4-dihydro-α-carbolines from 2-aminoindole

  • R. S. Sagitullin
  • A. N. Kost
  • T. V. Mel'nikova
  • P. A. Sharbatyan


In the condensation of 2-aminoindole with α,Β-unsaturated oxo compounds, in contrast to ordinary aromatic amines and a number of heterocyclic amines, the direction of cyclization is reversed. The general scheme of the reaction includes the reaction of the Β position of 2-aminoindole with the activated double bond of the oxo compound via a mechanism of the Michael type and condensation of the carbonyl group of the unsaturated carboline structure, which subsequently undergoes aromatization. The intermediate 3,4-dihydro-α-carbolines were produced and isolated; this made it possible in a number of cases to establish the structures of the final α-carbolines. The structures of the 3,4-dihydro compounds were confirmed by the set of spectral characteristics. Data from the UV, IR, PMR, and mass spectra are presented.


Mass Spectrum Organic Chemistry Carbonyl Double Bond Carbonyl Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    N. Murata and H. Arai, J. Chem. Soc. Japan, Ind. Chem. Sect., 56, 628 (1953); Chem. Abstr., 49, 7517 (1955).Google Scholar
  2. 2.
    N. Murata and H. Arai, J. Chem. Soc. Japan, Ind. Chem. Sect., 63, 319 (1960); Ref. Zh. Khim., T7zh, 64 (1961).Google Scholar
  3. 3.
    S. Tamura, C. Takiguchi, and K. Sakai, J. Pharm. Soc. Japan, 76, 915 (1956); Chem. Abstr., 51, 2782 (1957).Google Scholar
  4. 4.
    H. Rapaport and A. Batcho, J. Org. Chem., 28, 1753 (1963).Google Scholar
  5. 5.
    W. W. Paudler and T. I. Kress, J. Org. Chem., 31, 3055 (1966).Google Scholar
  6. 6.
    L. H. Klemm, G. E. Kleopfenstein, R. Zell, D. R. McCay, and R. A. Klemm, J. Org. Chem., 34, 347 (1969).Google Scholar
  7. 7.
    R. S. Sagitullin, N. N. Borisov, A. N. Kost, and N. A. Simonova, Khim. Geterotsikl. Soedin., No. 1, 61 (1971).Google Scholar
  8. 8.
    A. M. Semenov, E. P. Styngach, and G. M. Kuperman, Khim. Geterotsikl. Soedin., No. 5, 878 (1968).Google Scholar
  9. 9.
    A. N. Kost, R. S. Sagitullin, V. I. Gorbunov, and N. N. Modyanov, Khim. Geterotsikl. Soedin., No. 3, 359 (1970).Google Scholar
  10. 10.
    A. N. Kost, R. S. Sagitullin, and V. I. Gorbunov, Dokl. Akad. Nauk SSSR, 182, 838 (1968).Google Scholar
  11. 11.
    W. S. Johnson and B. G. Buell, J. Amer. Chem. Soc., 74, 4517 (1952).Google Scholar
  12. 12.
    P. Nantka-Namirski and J. Kalinowski, Acta Polon. Pharm., 28, 217 (1971).Google Scholar
  13. 13.
    R. S. Sagitullin, T. V. Mel'nikova, A. N. Kost, V. F. Snegirev, and E. N. Frenkel', Khim. Geterotsikl. Soedin., No. 8, 1043 (1973).Google Scholar
  14. 14.
    L. Stephenson and W. K. Warburton, J. Chem. Soc., C, No. 10, 1355 (1970).Google Scholar
  15. 15.
    I. Sasaki, M. Suzuki, and M. Hattori, Chem. Pharm. Bull. (Japan), 17, 1515 (1969).Google Scholar
  16. 16.
    P. Nantka-Namirski, Acta Polon. Pharm., 23, 331 (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • R. S. Sagitullin
    • 1
  • A. N. Kost
    • 1
  • T. V. Mel'nikova
    • 1
  • P. A. Sharbatyan
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityMoscow

Personalised recommendations