Skip to main content
Log in

B-cell epitopes of autoantigenic DNA-binding proteins

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Conclusions

Autoantibodies to chromatin-associated proteins are frequently present in sera from patients with SLE, and related disorders. Autoantibodies to conformational epitopes may constitute the majority of the immune response to chromatin-associated antigens, suggesting that intact chromatin may be the immunogen in SLE as well as in certain forms of drug-induced lupus (eg. in procainamide-induced lupus). The preferential reactivity of autoantibodies to histones, PCNA, and Ku with antigenic determinants that are exposed on the surface of the native antigens is consistent with this interpretation.

Strikingly, autoantibodies to these antigens frequently bind within or near active or functional sites, such as the DNA binding site of Ku [29], the site of PCNA critical for its role in enhancing DNA synthesis by polymerase delta [52], the posttranslational modification sites of the histones [68], and the catalytic site of poly(ADP-ribose) polymerase [69]. The explanation for the frequent observation that autoantibodies inhibit function is not yet known. It is possible that this phenomenon is related to the generation of autoantibodies by molecular mimicry, and that the functional sites of foreign antigens may crossreact with self antigens having similar functional sites [9]. Alternatively, the targeting of functional sites by autoantibodies may reflect merely a similar requirement for active sites and antibody-recognition sites to be exposed on surface. Features that make a site suitable for interacting with other proteins (eg. enzymes) or nucleic acids (eg DNA binding sites) may also make it more easily recognized by antibodies.

The amino acids critical for autoantibody binding have not, in any of these cases, been shown to be critical to function. Further mapping and/ or mutagenesis studies will be necessary to determine the significance of the targeting of active or functional sites by autoantibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan EM (1982) Adv. Immunol. 33: 167–240

    Google Scholar 

  2. Tan EM (1989) Adv. Immunol. 44: 93–151

    Google Scholar 

  3. Maddison PJ & Reichlin M (1977) Arthritis Rheum. 20: 819–824

    Google Scholar 

  4. Deutscher SL & Keene JD (1988) Proc. Natl. Acad. Sci. USA 85: 3299–3303

    Google Scholar 

  5. vanVenrooij WJ, Hoet R, Hageman B, Mattaj IW & Van dePutte LB (1990) J. Clin. Invest. 86: 2154–2160

    Google Scholar 

  6. Burlingame RW & Rubin RL (1991) J. Clin. Invest. 88: 680–690

    Google Scholar 

  7. Schlomchik MJ, Marshak-Rothstein A, Wolfowicz CB, Rothstein TL & Weigert MG (1987) Nature (Lond.) 328: 805–811

    Google Scholar 

  8. Schlomchik M, Mascelli M, Shan H, Radic MZ, Pisetsky D, Marshak-Rothstein A & Weigert M (1990) J. Exp. Med. 171: 265–298

    Google Scholar 

  9. Chan EK & Tan EM (1987) J. Exp. Med. 166: 1627–1640

    Google Scholar 

  10. Reeves WH (1985) J. Exp. Med. 161: 18–39

    Google Scholar 

  11. Reeves WH (1987) J. Rheumatol 14 (Suppl 13): 97–105

    Google Scholar 

  12. Mimori T & Hardin JA (1986) J. Biol. Chem. 261: 10375–10379

    Google Scholar 

  13. deVries E, vanDriel W, Bergsma WG, Arnberg AC & van derVliet PC (1989) J. Mol. Biol. 208: 65–78

    Google Scholar 

  14. Mimori T, Hardin JA & Steitz JA (1986) J. Biol. Chem. 261: 2274–2278

    Google Scholar 

  15. Francoeur AM, Peebles CL, Gompper PT & Tan EM (1986) J. Immunol. 136: 1648–1653

    Google Scholar 

  16. Chan JYC, Lerman MI, Prabhakar BS, Isozaki O, Santisteban P, Kuppers RC, Oates EL, Notkins AL & Kohn LD (1989) J. Biol. Chem. 264: 3651–3654

    Google Scholar 

  17. Yaneva M & Busch H (1986) Biochemistry 25: 5057–5063

    Google Scholar 

  18. Bravo R & Celis JE (1982) Clin. Chem. 28: 949–954

    Google Scholar 

  19. Stuiver MH, Celis JE & van derVliet PC (1991) FEBS 282: 189–192

    Google Scholar 

  20. Lees-Miller SP, Chen YR & Anderson CW (1990) Mol. Cell. Biol. 10: 6472–6481

    Google Scholar 

  21. Stuiver MH, Coenjaerts FEJ & van derVliet PC (1990) J. Exp. Med. 172: 1049–1054

    Google Scholar 

  22. Amabis JM, Amabis DC, Kaburaki J & Stollar BD (1990) Chromosoma 99: 102–110

    Google Scholar 

  23. Knuth MW, Gunderson SI, Thompson NE, Strasheim LA & Burgess RR (1990) J. Biol. Chem. 265: 17911–17920

    Google Scholar 

  24. Roberts MR, Miskimins WK & Ruddle FH (1989) Cell Regulation 1: 151–164

    Google Scholar 

  25. May G, Sutton C & Gould H (1991) J. Biol. Chem. 266: 3052–3059

    Google Scholar 

  26. Mimori T, Ohosone Y, Hama N, Suwa A, Akizuki M, Homma M, Griffith AJ & Hardin JA (1990) Proc. Natl. Acad. Sci. USA 87: 1777–1781

    Google Scholar 

  27. DePamphilis ML (1988) Cell 52: 635–638

    Google Scholar 

  28. Allaway GP, Vivino AA, Kohn LD, Notkins AL & Prabhakar BS (1989) Biochem. Biophys. Res. Commun. 168: 747–755

    Google Scholar 

  29. Reeves WH, Pierani A, Chou CH, Schmitt J, Knuth MW, Stunnenberg HG & Roeder RG (1991) Mol. Biol. Rep. 15: 115

    Google Scholar 

  30. Reeves WH & Sthoeger ZM (1989) J. Biol. Chem. 264: 5047–5052

    Google Scholar 

  31. Yaneva M, Wen J, Ayala A & Cook R (1989) J. Biol. Chem. 264: 13407–13411

    Google Scholar 

  32. Ma J & Ptashne M (1987) Cell 48: 847–853

    Google Scholar 

  33. Hope IA & Struhl K (1986) Cell 46: 885–894

    Google Scholar 

  34. Prabhakar BS, Allaway GP, Srinivasappa J & Notkins AL (1990) J. Clin. Invest. 86: 1301–1305

    Google Scholar 

  35. Mimori T, Akizuki M, Yamagata H, Inada S, Yoshida S & Homma M (1981) J. Clin. Invest. 68: 611–620

    Google Scholar 

  36. Yaneva M & Arnett FC (1989) Clin. Exp. Immunol. 76: 366–372

    Google Scholar 

  37. Reeves WH, Sthoeger ZM & Lahita RG (1989) J. Clin. Invest. 84: 562–567

    Google Scholar 

  38. Reeves WH, Pierani A, Chou CH, Ng T, Nicastri C, Roeder RG & Sthoeger ZM (1991) J. Immunol. 146: 2678–2686

    Google Scholar 

  39. Wen J & Yaneva M (1990) Mol. Immunol. 27: 973–980

    Google Scholar 

  40. Porges A, Ng T & Reeves WH (1990) J. Immunol. 145: 4222–4228

    Google Scholar 

  41. Almendral JM, Huebsch D, Blundell PA, Macdonald-Bravo H & Bravo R (1987) Proc. Natl. Acad. Sci. USA 84: 1575–1579

    Google Scholar 

  42. So AG & Downey KM (1992) Crit. Rev. Biochem. Mol. Biol. 27: 129–155

    Google Scholar 

  43. Miyachi K, Fritzler MJ & Tan EM (1978) J. Immunol. 121: 2228–2234

    Google Scholar 

  44. Bravo R & Macdonald-Bravo H (1987) J. Cell Biol. 105: 1549–1554

    Google Scholar 

  45. Bravo R & Macdonald-Bravo H (1985) EMBO J. 4: 655–661

    Google Scholar 

  46. Bravo R & Celis JE (1980) J. Cell Biol. 84: 795–802

    Google Scholar 

  47. Celis JE & Celis A (1985) Proc. Natl. Acad. Sci. USA 82: 3262–3266

    Google Scholar 

  48. Bravo R, Frank R, Blundell PA & Macdonald-Bravo H (1987) Nature (Lond.) 326: 515–517

    Google Scholar 

  49. Prelich G, Tan KK, Kostura M, Mathews MB, So AG, Downey KM & Stillman B (1987) Nature (Lond.) 326: 517–520

    Google Scholar 

  50. Prelich G, Kostura M, Marshak DR, Mathews MB & Stillman B (1987) Nature (Lond.) 326: 471–475

    Google Scholar 

  51. Suzuka I, Daidoji H, Matsuoka M, Kadowski KI, Takasaki Y, Nakane PK & Moriuchi T (1989) Proc. Natl. Acad. Sci. USA 86: 3189

    Google Scholar 

  52. Tan CK, Sullivan K, Li XY, Tan EM, Downey KM & So AG (1987) Nucl. Acids Res. 15: 9299–9308

    Google Scholar 

  53. Ogata K, Ogata Y, Takasaki Y & Tan EM (1987) J. Immunol. 139: 2942–2946

    Google Scholar 

  54. Huff JP, Roos G, Peebles CL, Houghten R, Sullivan KF & Tan EM (1990) J. Exp. Med. 172: 419–429

    Google Scholar 

  55. Wu RS, Panusz HT, Hatch CL & Bonner WM (1986) CRC Crit. Rev. Biochem. 20: 201–263

    Google Scholar 

  56. Pettijohn DE (1988) J. Biol. Chem. 263: 12793–12796

    Google Scholar 

  57. Pederson DS, Thomas F & Simpson RT (1986) Annu. Rev. Cell Biol. 2: 117–147

    Google Scholar 

  58. Allan J, Hartman PG, Crane-Robinson C & Aviles FX (1980) Nature (Lond.) 288: 675–679

    Google Scholar 

  59. Monestier M, Fasy TM & Bohm L (1989) Mol. Immunol. 26: 749–758

    Google Scholar 

  60. Suzuki M (1989) EMBO J. 8: 797–804

    Google Scholar 

  61. Churchill MAE & Travers AA (1991) Trends Biochem. Sci. 16: 92–97

    Google Scholar 

  62. Costa O & Monier JC (1986) J. Rheumatol. 13: 722–725

    Google Scholar 

  63. Monestier M, Losman JA, Fasy TM, Debbas ME, Massa M, Albani S, Bohm L & Martini A (1990) Arthritis Rheum. 33: 1836–1841

    Google Scholar 

  64. Gohill J, Cary PD, Couppez M & Fritzler MJ (1985) J. Immunol. 135: 3116–3121

    Google Scholar 

  65. Hardin JA & Thomas JO (1983) Proc. Natl. Acad. Sci. USA 80: 7410–7414

    Google Scholar 

  66. Portanova JP, Arndt RE, Tan EM & Kotzin BL (1987) J. Immunol. 138: 446–451

    Google Scholar 

  67. Portanova JP, Cheronis JC, Blodgett JK & Kotzin BL (1990) J. Immunol. 144: 4633–4640

    Google Scholar 

  68. Goldknopf I & Busch H (1977) Proc. Natl. Acad. Sci. USA 74: 864

    Google Scholar 

  69. Yamanaka H, Willis EH & Carson DA (1989) J. Clin. Invest. 83: 180–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Public Health Service grant AR40391 from the National Institutes of Health

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, CH., Satoh, M., Wang, J. et al. B-cell epitopes of autoantigenic DNA-binding proteins. Mol Biol Rep 16, 191–198 (1992). https://doi.org/10.1007/BF00464707

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00464707

Key words

Navigation