Archives of oto-rhino-laryngology

, Volume 215, Issue 3–4, pp 223–229 | Cite as

Filter function of the guinea pig cochlea after degeneration of outer hair cells

  • Götz Romahn
  • Georg Boerger
Article

Summary

After kanamycin induced degeneration of outer hair cells from guinea pigs the tuning properties of primary auditory nerve fibres are compared with those of normal untreated guinea pigs. The existence of fibres with no alteration of the tuning properties leads to the conclusion that there is no neural interaction between inner and outer hair cells needed to enhance the frequency selectivity.

Key words

Cochlear tuning Cochlear hair cells Ototoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck, Ch.: Die Bedeutung vergleichender Untersuchungen am akustischen System. Acta oto-laryng. 71, 206–211 (1971)Google Scholar
  2. Evans, E. F.: The frequency response and other properties of single fibres in the guinea-pig cochlea nerve. J. Physiol. 226, 263–287 (1972)Google Scholar
  3. Evans, E. F., Harrison, R. V.: Correlation between cochlear outer hair cell damage and deterioration of cochlear nerve tuning properties in the guinea pig. J. Physiol. 256, 43P-44P (1976)Google Scholar
  4. Evans, E. F., Wilson, J. P.: The frequency selectivity of the cochlea. In: Basic mechanism in hearing (Møller, A., Ed.) New York-London: Academic Press 1973Google Scholar
  5. Federspil, F.: Das Cochleogramm des normalen Meerschweinchens. Arch. Win. exp. Ohr.-, Nas.- u. Kehlk.-Heilk. 201, 283–293 (1972)Google Scholar
  6. Kiang, N. Y.-S. et al.: Discharge patterns of single fibers in the cat's auditory nerve. Research Monograph No. 35. Cambridge, Massachusetts: MIT Press 1965Google Scholar
  7. Klinke, R., Evans, E. F.: The effect of drugs on the sharpness of tuning of single cochlea nerve fibres. Pflügers Arch., Suppl. 347, R53 (1974)Google Scholar
  8. Lynn, P. A., Sayers, B. McA.: Cochlear innervation, signal processing, and their relation to auditory time-intensity effects. J. Acoust. Soc. Amer. 47, 525–533 (1970)Google Scholar
  9. Nieder, P.: Addressed exponential delay line theory of cochlear organization. Nature 230, 255–257 (1971)Google Scholar
  10. Romahn, G.: Sinneszellspezifische Erregungen auf auditorischen Nervenfasern. Dissertation, Technische Universität, Berlin 1976Google Scholar
  11. Úlehlová, L.: Normal cellular pattern of the organ of corti in the Guinea Pig. Arch. klin. exp. Ohr-, Nas.- u. Kehlk.-Heilk. 204, 321–330 (1973)Google Scholar
  12. Wersäll, J.: Problems and pitfalls in studies of cochlear hair cell pathology. In: Basic mechanisms in hearing (Møller, A., Ed.). New York-London: Academic Press 1973Google Scholar
  13. Wilson, J. P.: Basilar membrane vibration data and their relation to theories of frequency analysis. In: Facts and models in hearing (Zwicker E., Terhardt, E., Eds.). Berlin-Heidelberg-New York: Springer Verlag 1974Google Scholar
  14. Wilson, J. P.: Capacitive probe measures of basilar membrane vibration. Symp. on Hearing Theory, Eindhoven, Holland 1972Google Scholar
  15. Zwislocki, J. J., Sokolich, W. G.: Neuro-mechanical frequency analysis in the cochlea. In: Facts and models in hearing (Zwicker, E., Terhardt, E., Eds.). Berlin-Heidelberg-New York: Springer Verlag 1974Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Götz Romahn
    • 1
  • Georg Boerger
    • 1
  1. 1.Heinrich-Hertz-Institut für Nachrichtentechnik Berlin GmbHBerlin 10Federal Republic of Germany

Personalised recommendations