Archives of Microbiology

, Volume 148, Issue 4, pp 305–313 | Cite as

Isolation and characterization of a carbon monoxide utilizing strain of the acetogen Peptostreptococcus productus

  • G. Geerligs
  • H. C. Aldrich
  • W. Harder
  • G. Diekert
Original Papers

Abstract

From sludge obtained from the sewage digester plant in Marburg-Cappel a strictly anaerobic bacterium was enriched and isolated with carbon monoxide as the sole energy source. Based on morphological and physiological characteristics the isolate was identified as a strain of Peptostreptococcus productus, which was called strain Marburg. The organism was able to grow on CO (50% at 200 kPa) as the sole energy source at a doubling time of 3 h and converted this substrate to acetate and CO2. The type strain of P. productus was not able to grow at the expense of CO. Electron microscopic investigations of strain Marburg cells revealed a cell wall which was different from that of other Gram-positive prokaryotes. DNA:DNA hybridization studies of the DNA isolated from strain Marburg and the type strain as well as some morphological and physiological properties of both strains confirmed the low degree or relatedness between the two strains.

Key words

Acetogenic bacteria Peptostreptococcus productus Carbon monoxide utilization Cell wall structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch WE, Schoberth S, Tanner RS, Wolfe RS (1977) Acetobacterium, a new genus of hydrogen oxidizing, carbondioxide reducing, anaerobic bacteria. Int J Syst Bacteriol 27:355–361Google Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  3. Braun M, Schoberth S, Gottschalk G (1979) Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats. Arch Microbiol 120:201–204Google Scholar
  4. Chapman RL, Staehelin LA (1986) Freeze-fracture (-etch) electron microscopy. In: Aldrich HC, Todd WJ (eds) Ultrastructure techniques for microorganisms. Plenum Press, New York, pp 213–240Google Scholar
  5. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142Google Scholar
  6. Diekert G, Hansch M, Conrad R (1984) Acetate synthesis from 2 CO2 in acetogenic bacteria: is carbon monoxide an intermediate? Arch Microbiol 138:224–228Google Scholar
  7. Diekert G, Fuchs G, Thauer RK (1985) Properties and function of carbon monoxide dehydrogenase from anaerobic bacteria. In: Poole RK, Dow CS (eds) Microbial gas metabolism. Academic Press, London Orlando San Diego New York Toronto Montreal Sydney Tokyo, pp 115–130Google Scholar
  8. Diekert G, Schrader E, Harder W (1986) Energetics of CO formation and CO oxidation in cell suspensions of Acetobacterium woodii. Arch Microbiol 144:386–392Google Scholar
  9. Dorn M, Andreesen JR, Gottschalk G (1978) Fermentation of fumarate and l-malate by Clostridium formicoaceticum. J Bacteriol 133:26–32Google Scholar
  10. Erdos GW (1986) Localization of carbohydrate-containing molecules. In: Aldrich HC, Todd WJ (eds) Ultrastructure techniques for microorganisms. Plenum Press, New York, pp 399–420Google Scholar
  11. Ezaki T, Yamamoto N, Ninomiya K, Suzuki S, Yabuuchi, E (1983) Transfer of Peptococcus indolicus, Peptococcus asacchrarolyticus, Peptococcus prevotii, and Peptococcus magnus to the genus Peptostreptococcus and proposal of Peptostreptococcus tetradius sp. nov. Int J Syst Bact 33:683–698Google Scholar
  12. Friedrich W (1975) Vitamin B12 und verwandte Corrinoide. Georg Thieme Verlag, StuttgartGoogle Scholar
  13. Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Rev 39:181–213Google Scholar
  14. Gillis M, De Ley J, De Cleene M (1970) The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 12:143–153Google Scholar
  15. Gottwald M, Andreesen JR, Le Gall J, Ljungdahl LG (1975) Presence of cytochrome and menaquinone in Clostridium formicoaceticum and Clostridium thermoaceticum. J Bacteriol 122: 325–328Google Scholar
  16. Holländer R, Wolf G, Mannheim W (1977) Lipoquinones of some bacteria and mycoplasmas, with consideration of their physiological significance. Ant v Leeuw 43:177–185Google Scholar
  17. Iterson W van (1984a) Inner structures of bacteria. Van Nostrand Reinhold Co., New York, p 501Google Scholar
  18. Iterson W van (1984b) Outer structures of bacteria. Van Nostrand Reinhold Co., New YorkGoogle Scholar
  19. Kröger A (1978) Determination of contents and redox states of ubiquinone and menaquinone. In: Methods in enzymology, vol LIII. Academic Press, London New York, pp 579–591Google Scholar
  20. Kröger A, Innerhofer A (1976) The function of the b cytochromes in the electron transport from formate to fumarate of Vibrio succinogenes. Eur J Biochem 69:497–506Google Scholar
  21. Laishley EJ, MacAlister TJ, Clements I, Young C (1973) Isolation and morphology of native intracellular polyglucose molecules from Clostridium pasteurianum. Can J Microbiol 19:991–994Google Scholar
  22. Leigh JA, Mayer F, Wolfe RS (1981) Acetogenium kivui, a new thermophilic hydrogen-oxidizing, acetogenic bacterium. Arch Microbiol 129:275–280Google Scholar
  23. Lorowitz WH, Bryant MP (1984) Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl Environ Microbiol 47:961–964Google Scholar
  24. Lynd L, Kerby R, Zeikus JG (1982) Carbon monoxide metabolism of the methylotrophic acidogen Butyribacterium methylotrophicum. J Bacteriol 149:255–263Google Scholar
  25. Maniatis T, Fritsch ET, Sambrook J (1982) Molecular cloning (A laboratory manual). Cold Spring Harbour LaboratoryGoogle Scholar
  26. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218Google Scholar
  27. Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biochem 5:109–118Google Scholar
  28. Mayer F, Lurz R, Schoberth S (1977) Electron microscope investigation of the hydrogen-oxidizing acetate-forming anaerobic bacterium Acetobacterium woodii. Arch Microbiol 115:207–213Google Scholar
  29. Müller M, Meister N, Moor H (1981) Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie 36:129–140Google Scholar
  30. Rogasa M (1971) Peptococcaceae, a new family to include the Grampositive, anaerobic cocci of the genera Peptococcus, Peptostreptococcus, and Ruminococcus. Int J Syst Bact 21:234–237Google Scholar
  31. Scherer P, Sahm H (1981) Effects of trace elements and vitamins on the growth of Methanosarcina barkeri. Acta Biotechnol 1:57–65Google Scholar
  32. Sharak Genthner BR, Bryant MP (1982) Growth of Eubacterium limosum with CO as the energy source. Appl Environ Microbiol 43:70–74Google Scholar
  33. Sleytr UB (1978) Regular arrays of macromolecules on bacterial cell walls: Structure, chemistry, assembly, and function. Internat Rev Cytol 53:1–64Google Scholar
  34. Tanner RS, Wolfe RS, Ljungdahl LG (1978) Tetrahydrofolate enzyme levels in Acetobacterium woodii and their implication in the synthesis of acetate from CO2. J Bacteriol 134:668–670Google Scholar
  35. Vogelmann H, Wagner F (1973) Elutionschromatographische Trennungen von Corrinoiden an dem unpolaren Adsorbens Amberlite XAD-2. J Chromatogr 76:359–379Google Scholar
  36. Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886Google Scholar
  37. Wood HG (1985) Then and now. Ann Rev Biochem 54:1–41Google Scholar
  38. Wood HG, Ragsdale SW, Pezacka E (1986) The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol Rev 39: 345–362Google Scholar
  39. Zeikus JG, Kerby R, Krzycki JA (1985) Single-Carbon chemistry of acetogenic and methanogenic bacteria. Science 227:1167–1173Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • G. Geerligs
    • 1
  • H. C. Aldrich
    • 1
  • W. Harder
    • 1
  • G. Diekert
    • 1
  1. 1.Fachbereich Biologie/MikrobiologiePhilipps-UniversitätMarburgGermany

Personalised recommendations