Advertisement

Archives of oto-rhino-laryngology

, Volume 209, Issue 4, pp 247–262 | Cite as

Degenerative alterations in the ventral cochlear nucleus of the guinea pig after impulse noise exposure

A preliminary light and electron microscopic study
  • H. -M. Theopold
Article

Summary

Guinea pigs were exposed to the noise of 40 shots of an alarm pistol held at a distance of about 60 cm. The ventral cochlear nuclei were studied in phase contrast and electron microscopy after both short survival periods and longer periods of up to 55 days survival.

Marked degeneration of primary cochlear nerve endings and of synapting secondary neurons of the posterior caudal part of the ventral cochlear nucleus (AVCN) and the octopus cell area (OCA) of the posterior ventral cochlear nucleus (PVCN) was found most distinctly after 5–55 days.

As criteria of degeneration of the second neuron of the afferent auditory pathway we used:

  1. 1.

    The loss of the synapting nerve endings, mainly “shrinking”.

     
  2. 2.

    The formation of huge mitochondria in the second order neurons and their dendrites.

     
  3. 3.

    The phagocytosis by glial cells of nerve endings, of the second order neurons and of their dendrites.

     

After 5 days survival time no distinct changes were found in the granular cell area of PVCN, where as all stages of degeneration could be found in OCA at this time. In the discussion of these findings it is concluded that additional studies of the morphology of the cochlear nuclei seem necessary, as these may lead to a better understanding of the pathology of hearing following heavy noise exposure.

Key words

Acoustic Trauma Cochlear Nucleus Degeneration Electron Microscopy 

Zusammenfassung

Meerschweinchen wurden dem Impulsgeräusch von 40 Schüssen einer Startpistole ausgesetzt. Veränderungen in den akustischen Kernen wurden licht- und elektronenmikroskopisch untersucht. 5–55 Tage nach Schallexposition wurde Phagocytose an degenerierenden N. acusticus Endigungen und von Neuronen zweiter Ordnung beobachtet.

Es werden verschiedene Hypothesen diskutiert, eine hinreichend überzeugende Erklärung für diese Veränderungen konnte jedoch nicht gefunden werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akert, K., Cuénod, M., Moor, H.: Further observations on the enlargement of synaptic vesicles in degenerating optic nerve terminals of the avian tectum. Brain Res. 25, 255–263 (1971)Google Scholar
  2. Anderson, C. A., Westrum, L. E.: An electron microscopic study of the normal synaptic relationships and early degenerative changes in the rat olfactory tubercle. Z. Zellforsch. 127, 462–482 (1972)Google Scholar
  3. Beck, Chl., Beickert, P.: Morphologische Veränderungen an der Schnecke des Meerschweinchens bei Sauerstoffmangel und Lärmbelastung. Arch. Ohr.-, Nas.- u. Kehlk.-Heilk. 172, 238–245 (1958)Google Scholar
  4. Bodian, D.: An electron microscopic characterization of classes of synaptic vesicles by means of controlled aldehyde fixation. J. Cell Biol. 44, 115–124 (1970)Google Scholar
  5. Brawer, J. R., Morest, D. K., Kane, E. C.: The neuronal architecture of the cochlear nucleus of the cat. J. comp. Neurol. 155, 251–300 (1974)Google Scholar
  6. Cajal y, Ramón S.: Histologie du Système nerveux de l'homme et des vertébrés, chap. 28, pp. 774–838. Paris: A. Maloine 1909Google Scholar
  7. Cohen, E. S.: Projections of the cochlea to the dorsal cochlear nucleus of the cat. Exp. Neurol. 35, 470–479 (1972)Google Scholar
  8. Colonnier, M.: Experimental degeneration in the cerebral cortex. J. Anat. (Lond.) 98, 47–53 (1964)Google Scholar
  9. Engström, H., Ades, H. W.: Effect of high intensity noise and inner ear sensory epithelia. Acta oto-laryng. (Stockh.) Suppl. 158, 217 (1960)Google Scholar
  10. Engström, H., Ades, H. W., Bredberg, G.: Normal structure of the organ of Corti and the effect of noise induced cochlear damage. In: Sensory-neural hearing loss. A Ciba Foundation Symposium (ed. G. E. W. Wolstenholme, J. Knight), p. 127. London: J. & A. Churchill 1970Google Scholar
  11. Gentschev, T., Sotelo, C.: Degenerative patterns in the ventral cochlear nucleus of the rat after primary deafferentation. An ultrastructural study. Brain Res. 62, 37–60 (1973)Google Scholar
  12. Gray, E. G.: Axo-somatic and axo-dendritic synapses of the cerebral cortex: An EM-study. J. Anat. (Lond.) 93, 420–433 (1959)Google Scholar
  13. Gray, E. G.: Electron microscopy of excitatory and inhibitory synapses: A brief review. Progr. Brain Res. 31, 141–155 (1969)Google Scholar
  14. Gray, E. G.: The fine structural characterization of different types of synapses. Progr. Brain. Res. 34, 149–160 (1971)Google Scholar
  15. Held, H.: Die zentrale Gehörleitung. Arch. Anat. Physiol. 201–248 (1893)Google Scholar
  16. Kane, E.C.: Octopus cells in the cochlear nucleus of the cat: Heterotypic synapses upon homeotypic neurons. Intern. J. Neurosci. 5, 251–279 (1973)Google Scholar
  17. Kane, E. C.: Patterns of degeneration in the caudal cochlear nucleus of the cat after ablation. Anat. Rec. 179, 67–92 (1974)Google Scholar
  18. Kawana, E., Akert, K., Bruppacher, H.: Enlargement of synaptic vesicles as an early sign of terminal degeneration in the rat caudate nucleus. J. comp. Neurol. 142, 297–308 (1971)Google Scholar
  19. Kellerhals, B., Engström, H., Ades, H. W.: Die Morphologie des Ganglion spirale cochleae. Acta-oto-laryng. (Stockh.) Suppl. 226 (1967)Google Scholar
  20. v. Kölliker, A.: Handbuch der Gewebelehre der Menschen, Vol. 2, pp. 248–272. Leipzig: W. Engelmann 1896Google Scholar
  21. Lorente de Nó, R.: Anatomy of the eight nerve. III. General plan of structure of the primary cochlear nuclei. Laryngoscope (St. Louis) 43, 327–350 (1933)Google Scholar
  22. Matthews, M. R., Cowan, W. M., Powell, T. P. S.: Transneuronal cell degeneration in the lateral geniculate nucleus of the macaque monkey. J. Anat. (Lond.) 94, 145–169 (1960)Google Scholar
  23. Osen, K. K.: Cytoarchitecture of the cochlear nucleus of the cat. J. comp. Neurol. 136, 453–484 (1969)Google Scholar
  24. Osen, K. K.: Afferent and efferent connections of three well-defined cell types of the cat cochlear nuclei. From exit. synaptic mechanisms (ed. P. Andersen and J. K. S. Jansen). Oslo-Bergren-Tramsö: Universitetsforlaget 1970(a)Google Scholar
  25. Osen, K. K.: Course and termination of the primary afferents in the cochlear nuclei of the cat. Arch. ital. Biol. 108, 21–51 (1970b)Google Scholar
  26. Pirsig, W.: Zur Feinstruktur afferenter und nicht afferenter Nervenendigungen im ventralen Cochleariskern des Meerschweinchens, II. Mitteilung. Arch. klin. exp. Ohr.-, Nas.- u. Kehlk.-Heilk. 196, 295–301 (1970)Google Scholar
  27. Powell, T. P. S., Erulkar, S. D.: Transneuronal cell degeneration in the auditory relay nuclei of the cat. J. Anat. (Lond.) 96, y 249–268 (1962)Google Scholar
  28. Raisman, G.: A comparison of the mode of termination of the hippocampal and hypothalamic afferents in the septal nuclei as revealed by electron microscopy of degeneration. Exp. Brain Res. 7, 317–343 (1969)Google Scholar
  29. Robertis de, E.: Submicroscopic changes of the synapse after nerve section in the acoustic ganglion of the guinea pig. An electron microscope study. J. biophys. biochem. Cytol. 2, 503–519 (1956)Google Scholar
  30. Rüedi, L., Furrer, W.: Das akustische Trauma. Pract. oto-rhino-laryng. (Basel) 8, Fasc. 4 (1946)Google Scholar
  31. Sando, I.: The anatomical interrelationship of the cochlear nerve fibers. Acta oto-laryng. (Stockh.) 59, 417–436 (1965)Google Scholar
  32. Uchizono, K.: Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature (Lond.) 207, 642–643 (1965)Google Scholar
  33. Wong-Riley, M. T. T.: Terminal degeneration and glial reactions in the lateral geniculate nucleus of the squirrel monkey after eye removal. J. comp. Neurol. 144, 61–92 (1972)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • H. -M. Theopold
    • 1
  1. 1.Universitäts-HNO-Klinik MünchenBundesrepublik Deutschland

Personalised recommendations