Advertisement

Elektronenmikroskopische Untersuchungen an Spinnenmuskeln

  • E. Zebe
  • W. Rathmayer
Article

Zusammenfassung

Die Pasern aus den Beinmuskeln der Vogelspinne Dugesiella hentzi sind zwischen 100 und 250 μm dick und durch tiefe Einfaltungen des Sarcolemms in Untereinheiten gegliedert. Die meist bandförmigen Myofibrillen liegen darin in radiärer Anordnung. A-Bandbreite und Sarcomerenlänge variieren sehr stark (Extremwerte 2,8 und 5,6 bzw. 3,0 und 7,3 μm). Ausrichtung und Anordnung der Myofilamente sind wenig exakt. Auf ein Primärfilament (Durchmesser 230–235 Å) kommen durchschnittlich 4–4,5 Sekundärfilamente (70–80 Å).

Das sarcoplasmatische Reticulum (SR) ist extensiv und in Form eines unregelmäßigen Netzes aus schlauchartigen Elementen ausgebildet. Im Bereich des A-Bandes erweitern sich einzelne Schläuche zu Cisternen, die mit den Tubuli des Transversalsystems Dyaden bilden. Die SR-Membran zeigt dabei im Dyadenbereich charakteristische Strukturen: punktförmige Membranverdickungen, die ein Muster von großer Regelmäßigkeit bilden. Lage und Zahl der Dyaden sind sehr variabel (Durchschnitt 3–4 pro Sarcomer).

An electron microscopical study of spider muscles

Summary

Four different leg muscles of the tarantula Dugesiella hentzi were investigated electron microscopically. The fibers measure 100 to 250 μm in diameter. They are divided into subunits by deep invaginations of the sarcolemma. The myofibrils have the shape of irregular ribbons which are arranged radially within the fiber subunits. The length of the A band as well as the sarcomer length varies from 2.8 to 5.6 and 3.0 to 7.3 μn respectively. The myofilaments do not form very regular patterns. The ratio thick filaments (diameter 230 to 235 Å) to thin filaments (70 to 80 Å) is approximately 1 to 4 or 4.5. The sarcoplasmic reticulum (SE) is extensively developed. It consists of an irregular network of tubular elements surrounding the myofibrils and frequently crossing the Z discs. In the A band region some of the SR tubules widen. These cisternae form dyads with the tubules of the transversal system. In the dyads the membrane of the cisternae shows a characteristic structure: i.e. an exact pattern of small, point-like membrane thickenings. The position and the number of the dyads vary widely. Usually there are 3 to 4 in each sarcomer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Atwood, H. L.: Crustacean neuromuscular mechanisms. Amer. Zool. 7, 527–551 (1967).Google Scholar
  2. Auber, M.: Remarques sur l'ultrastructure des myofibrilles chez des scorpions. J. Microscopie 2, 233–236 (1963).Google Scholar
  3. Brandt, W. P., J. P. Reuben, L. Girardier, and H. Grundfest: Correlated morphological and physiological studies on isolated single muscle fibers. I. Fine structure of the crayfish muscle fiber. J. Cell Biol. 25, 233–260 (1965).Google Scholar
  4. Cohen, M. J., and A. Hess: Pine structural differences in “fast” and “slow” muscle fibres of the crab. Amer. J. Anat. 121, 285–304 (1967).Google Scholar
  5. Dillon, L. S.: The myology of the araneid leg. J. Morph. 90, 467–480 (1952).Google Scholar
  6. Fahrenbach, W. H.: The fine structure of fast and slow crustacean muscles. J. Cell Biol. 35, 69–79 (1967).Google Scholar
  7. Hagopian, M.: The myofilament arrangement in the femoral muscle of the cockroach, Leucophaea maderae F. J. Cell Biol. 28, 545–562 (1966).Google Scholar
  8. —, and D. Spiro: The sarcoplasmic reticulum and its association with the T-system in an insect. J. Cell Biol. 32, 535–545 (1967).Google Scholar
  9. — —: The filament lattice of cockroach thoracic muscle. J. Cell Biol. 36, 433–442 (1968).Google Scholar
  10. Heumann, H. G., u. E. Zebe: Über Feinbau und Funktionsweise der Fasern aus dem Hautmuskelschlauch des Regenwurms, Lumbricus terrestris L. Z. Zellforsch. 78, 131–150 (1967).Google Scholar
  11. Hoyle, G.: Nature of the excitatory sarcoplasmic reticular junction. Science 149, 70–72 (1965).Google Scholar
  12. Jahromi, S. S., und H. L. Atwood: Ultrastructural features of crayfish phasic and tonic muscle fibers. Canad. J. Zool. 45, 601–606 (1967).Google Scholar
  13. Rathmayer, W.: Neuromuscular transmission in a spider and the effect of calcium. Comp. Biochem. Physiol. 14, 673–687 (1965).Google Scholar
  14. —: Elektrophysiologische Untersuchung der Membraneigenschaften eines Spinnenmuskels. Verh. Dtsch. Zool. Ges. Heidelberg 1967. Zool. Anz., Suppl. 31, 616–622 (1968).Google Scholar
  15. Reger, J. F.: A comparative study on striated muscle fibers of the first antenna and the claw muscle of the crab Pinnixia spec. J. Ultrastruct. Res. 20, 72–82 (1967).Google Scholar
  16. —, and D. F. Cooper: A comparative study on the fine structure of the basalar muscle of the wing and the tibial extensor muscle of the leg of the lepidopteran Achalarus lyciades. J. Cell Biol. 33, 531–542 (1967).Google Scholar
  17. Revel, J. P.: The sarcoplasmic reticulum of the bat cricothyroid muscle. J. Cell Biol. 12, 571–588 (1962).Google Scholar
  18. Smith, D. S.: The organization of the flight muscle fibers in the Odonata. J. Cell Biol. 28, 109–126 (1966).Google Scholar
  19. Usherwood, P. N. R.: Insect neuromuscular mechanisms. Amer. Zool. 7, 553–582 (1967).Google Scholar
  20. Villafranca, G. W. de, and D. E. Philpott: The ultrastructure of striated muscle from Limulus polyphemus. J. Ultrastruct. Res. 5, 151–165 (1961).Google Scholar
  21. Walker, S. M., and G. R. Schrodt: The system connexions with the sarcolemma and the sarcoplasmic reticulum. Nature (Lond.) 211, 935–938 (1966).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • E. Zebe
    • 1
    • 2
    • 3
  • W. Rathmayer
    • 1
    • 2
    • 4
  1. 1.Zoologisches Institut HeidelbergBundesrepublik Deutschland
  2. 2.Zoologisches Institut Frankfurt a.M.Bundesrepublik Deutschland
  3. 3.Zoologisches Institut der UniversitätMünster
  4. 4.Fachbereich Biologie der UniversitätKonstanz

Personalised recommendations