Archives of oto-rhino-laryngology

, Volume 225, Issue 3, pp 199–205 | Cite as

Effects of deep hypothermia and circulatory arrest on the auditory brain stem responses

  • Kimitaka Kaga
  • Takashi Takiguchi
  • Kuninori Myokai
  • Akihiro Shiode


The effects of hypothermia on auditory brain stem response (ABR) in both children with congenital heart disease undergoing cardiac surgery and cats as an animal model were investigated. The latency of the ABR waves were prolonged with decreased body temperature. The latency of the later response components were prolonged more than that of the earlier response components; all waves disappeared below 25° C and during artificial cardiac arrest. When the body temperature was raised, the later component began to reappear above 25° C; the latency of all components shortened with temperature until normal responses were obtained at 34° C. The data from both humans and cats were comparable. The ABR seems to be a useful monitor for evaluating brain stem function during deep hypothermia.

Key words

Auditory brain stem responses Hypothermia Cardiac arrest Monitor of brain stem function 

Die Auswirkung von schwerer Hypothermie und von Unterbrechung der Blutzirkulation auf die akustischen Hirnstammpotentiale


Die Latenz der akustischen Hirnstammpotentiale verlängert sich mit Absinken der Körpertemperatur. Dabei ist die Latenz der späteren Komponenten mehr verlängert als die der früheren. Alle Potentiale verschwinden ab einer Körpertemperatur unter 25° C sowie bei artifizieller Unterbrechung der Blutzirkulation. Steigt die Körpertemperatur an, so werden die Latenzen erst bei Erreichen von 34° C wieder normal. Die akustischen Hirnstammpotentiale scheinen so Auskunft über die Funktion des Hirnstammes während schwerer Hypothermie zu geben.


Akustische Hirnstammpotentiale Hypothermie Unterbrechung der Blutzirkulation Funktion des Hirnstammes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Buchwald, J. S., Huang, C.: Farfield acoustic response: Origins in the cat. Science 189, 282–284 (1975)Google Scholar
  2. Brunberg, J. A., Reilly, E. L., Doty, D. B.: Central nervous system consequences in infants of cardiac surgery using deep hypothermia and circulatory arrest. Circulation 49/50 (Suppl. 11), 60–66 (1974)Google Scholar
  3. Fujii, T., Yoshizaki, K.: The action of ether on synaptic transmission observed in mammalian cerebral slice at moderate cooling. Low Temp. Med. 3, 25–29 (1977)Google Scholar
  4. Fujii, T.: Effects of cooling guinea pig cortex maintained in vitro. Electroencephalogr. Clin. Neurophysiol. 43, 238–247 (1977)Google Scholar
  5. Guttman, R.: The effect of temperature on the function of excitable membranes. In: Biophysics and physiology of excitable membranes. Adelman, W. J., Jr. (ed.), pp. 320–336. New York: Van Nostrand Reinhold Co. 1971Google Scholar
  6. Hubbard, J. I., Jones, S. F., Landau, E. M.: The effect of temperature change upon transmitter release, fascilitation and post-tetanic potentiation. J. Physiol (Lond.) 216, 591–609 (1971)Google Scholar
  7. Huxley, A. F.: Ionic movements during nerve activity. Ann. N.Y. Acad. Sci. 81, 221–246 (1959)Google Scholar
  8. Jewett, D. L.: Volume-conducted potentials in response to auditory stimuli as detected by averaging in the cat. Electroencephalogr. Clin. Neurophysiol. 28, 609–618 (1970)Google Scholar
  9. Jewett, D. L., Romano, M. N., Williston, J. S.: Human auditory evoked potentials; Possible brain stem components detected on the scalp. Science 167, 1517–1518 (1970)Google Scholar
  10. Reilly, E. L., Brundberg, J. A., Doty, D. B.: The effect of deep hypothermia and total circulatory arrest on the electroencephalogram in children. Electroencephalogr. Clin. Neurophysiol. 36, 661–667 (1974)Google Scholar
  11. Reilly, E. L., Kondo, C., Brunberg, J. A., Doty, D. B.: Visual evoked potentials during hypothermia and prolonged circulatory arrest. Electroencephalogr. Clin. Neurophysiol. 45, 100–106 (1978)Google Scholar
  12. Starr, A., Hamilton, A. E.: Correlation between confirmed sites of neurological lesions and abnormalities of far-field auditory brain stem responses. Electroencephalogr. Clin. Neurophysiol. 41, 595–608 (1976)Google Scholar
  13. Stockard, J. J., Sharbrough, W. F., Tinker, A. J.: Effects of hypothermia on the human brainstem auditory response. Ann. Neurol. 3, 368–370 (1978)Google Scholar
  14. Weiss, M., Wess, J., Cotton, J., Nicolas, F., Binet, J. P.: A study of the electroencephalogram during surgery with deep hypothermia and circulatory arrest in infants. J. Thorac. Cardiovasc. Surg. 70, 316–329 (1973)Google Scholar
  15. Wolin, L. R., Massopust, L. C., Cleveland, J. M. RN.: Electroretinogram and cortical evoked potentials under hypothermia. Arch. Ophthalmol. 72, 521–524 (1964)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Kimitaka Kaga
    • 1
  • Takashi Takiguchi
    • 2
  • Kuninori Myokai
    • 3
  • Akihiro Shiode
    • 3
  1. 1.Department of OtolaryngologyTeikyo University School of MedicineTokyoJapan
  2. 2.Department of OtolaryngologyHiroshima City HospitalHiroshimaJapan
  3. 3.Department of Heart SurgeryHiroshima City HospitalHiroshimaJapan

Personalised recommendations