Archives of oto-rhino-laryngology

, Volume 224, Issue 1–2, pp 125–128 | Cite as

Influence of thyroid state and improved hypoxia tolerance on noise-induced cochlea damage

  • H. Berndt
  • H. Wagner


Guinea pigs were exposed to pure tone noise (2.7 kHz, 130 dB, 1 h) and cochlear microphonic potentials were measured 24 h after exposure.

There is the possibility to modify the resulting noise-induced cochlea damage by regulating the function of the thyroid gland to alter the rate of metabolism. A hypofunction of the thyroid gland during sound exposure lessens, an over-function aggravates the damage.

After gradual adaptation of the animals to a simulated 10,000 m altitude, the electrophysiologically demonstrable noise-induced damage was reduced. This might be explained by the greater hypoxia tolerance and perhaps additional better oxygen supply to the receptor cells.

Key words

Noise-induced cochlea damage Thyroid state Hypoxia tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beck, Ch.: Die Bedeutung vergleichender Untersuchungen am akustischen System. Acta Otolaryngol. (Stockh.) 71, 206 (1971)Google Scholar
  2. Berndt, H., Kranz, D., Wagner, H., Gerhardt, H.-J.: Der lärmbedingte Innenohrschaden nach Erhöhung der O2-Mangelresistenz. Laryng. Rhinol. 57, 520 (1978)Google Scholar
  3. Berndt, H., Wagner, H.: Der Einfluß der Schilddrüsenfunktion auf den lärmbedingten Innenohrschaden. Arch. Otorhinolaryngol. 221, 183 (1978)Google Scholar
  4. Eckes, L.: Höhenadaptation. Teil III: Höhenanpassung als Problem der Humanbiologie (II. Morphologie, Physiologie, Biochemie). Gegenbaurs Morphol. Jahrb. 122, 535 (1976)Google Scholar
  5. Hauschild, F.: Pharmakologie und Grundlagen der Toxikologie. Leipzig: VEB Thieme 1973Google Scholar
  6. Koide, Y., Yoshida, M., Konno, M., Nakano, Y., Yoshikawa, Y., Nagaba, M.: Some aspects of the biochemistry of acoustic trauma. Ann. Otol. Rhinol. Laryngol. 69, 661 (1960)Google Scholar
  7. Misrahy, G. A., Arnold, I. E., Mundie, J. R., Shinabarger, E. W., Garwood, V. P.: Genesis of endolymphatic hypoxia following acoustic trauma. J. Acoust. Soc. Am. 30, 1082 (1958)Google Scholar
  8. Misrahy, G. A., Shinabarger, E. W., Arnold, I. E.: Changes in cochlear endolymphatic oxygen availability, action potential, and microphonics during and following asphyxia, hypoxia, and exposure to loud sounds. J. Acoust. Soc. Am. 30, 701 (1958)Google Scholar
  9. Spoendlin, H., Brun, J. P.: Relation of structural damage to exposure time and intensity in acoustic trauma. Acta Otolaryngol. (Stockh.) 75, 220 (1973)Google Scholar
  10. Stange, G., Holz, F., Terayama, Y., Beck, Ch.: Korrelation morphologischer, biochemischer und elektrophysiologischer Untersuchungsergebnisse des akustischen Systems. Arch. klin. exp. Ohr.-, Nas.-, u. Kehlh.-Heilk. 186, 229 (1966)Google Scholar
  11. Wagner, H., Berndt, H., Gerhardt, H.-J.: Zur Wirkung von Haarzellausfällen auf das Mikrophonpotential am Runden Fenster (RMP) des Meerschweinchens. Acustica 33, 308 (1975)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • H. Berndt
    • 1
  • H. Wagner
    • 1
  1. 1.Hals-Nasen-Ohrenklinik des Bereichs Medizin (Charité) der Humboldt-Universität zu BerlinBerlin

Personalised recommendations