Molecular and General Genetics MGG

, Volume 158, Issue 1, pp 35–45 | Cite as

The mapping of mutations in tRNA and cytochrome oxidase genes located in the cap-par segment of the mitochondrial genome of S. cerevisiae

  • M. Kaye Trembath
  • Giuseppe Macino
  • Alexander Tzagoloff
Article

Summary

  1. 1.

    Two mutants have been isolated which carry mutations in mitochondrial tRNA genes; one in the aspartyl-tRNA gene and the other in one of the threonyl-tRNA genes. The mutant tRNAs are unable to be charged with their respective amino acids.

     
  2. 2.

    These two mutations are located on the mitochondrial genome in the cap-par segment. Analyses of genetic recombination frequencies and co-retention and co-deletion frequencies of markers in petite strains yield an unambiguous gene order cap-asp-oxi 1-thr 1-oxi 2-par.

     
  3. 3.

    Two loci involved in the specification of cytochrome oxidase (oxi1 and oxi2) show an average recombination frequency of 14% in pairwise crosses involving mutations of both loci. Although the two loci have a related function and are genetically linked they are shown to be separated by at least one tRNA gene.

     
  4. 4.

    Pairwise intralocus crosses involving mit- mutations within either the oxi1 or oxi2 locus yield recombination frequencies <0.02–3.2%. However, no unique order could be derived for 19 oxi 1 and 6 oxi 2 mutations based on these data. In addition, the separation of mutant alleles within a single locus as the result of petite mutation was very rare. Consequently, attempts to order mutations within the locus from an analysis of the flanking markers in petites where separation occurred, provided only limited resolution.

     
  5. 5.

    A discussion is presented of the limitations of the current mitochondrial genetic mapping techniques when applied to the fine resolution of glycerol negative mit- and syn- mutations.

     

Keywords

Mitochondrial Genome Cytochrome Oxidase tRNA Gene Recombination Frequency Flank Marker 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldacci, G., Carnevali, F., Frontali, L., Leoni, L., Macino, G., Palleschi, C.: Heterogeneity of mitochondrial DNA from Saccharomyces cerevisiae and genetic information for tRNA. Nucleic Acids Res. 2, 1777–1786 (1975)Google Scholar
  2. Blamire, J., Melnick, L.M.: The mating reaction in yeast. I. A new mutation involved in the determination of mating type. Molec. gen. Genet. 140, 243–252 (1975)Google Scholar
  3. Casey, J., Hsu, H.-J., Getz, G.S., Rabinowitz, M., Fukuhara, H.: Transfer RNA genes in mitochondrial DNA of grande (wild type) yeast. J. molec. Biol. 88, 735–747 (1974)Google Scholar
  4. Clark Walker, G.C., Miklos, G.L.G.: Complementation in cytoplasmic petite mutants of yeast to form respiratory competent cells. Proc. nat. Acad. Sci. (Wash.) 72, 372–375 (1975)Google Scholar
  5. Cobon, G.S., Groot Obbink, D.J., Hall, R.M., Maxwell, R., Murphy, M., Rytka, J., Linnane, A.W.: Mitochondrial genes determining cytochrome b (complex III) and cytochrome oxidase function. In: Genetics and biogenesis of chloroplasts and mitochondria (Bücher, Th., Neupert, W., Sebald, W., Werner, S., eds.), pp. 453–460. Amsterdam: Elsevier North Holland Biomedical Press 1976Google Scholar
  6. Coruzzi, G., Trembath, M.K., Tzagoloff, A.: The isolation of mitochondrial and nuclear mutants of Saccharomyces cerevisiae with specific defects in mitochondrial functions. Methods in Enzymology (in press)Google Scholar
  7. Deutsch, J., Dujon, B., Netter, P., Petrochilo, E., Slonimski, P.P., Bolotin-Fukuhara, M.: Mitochondrial genetics VI. The petite mutation in Saccharomyces cerevisiae. Interrelations between the loss of the p + factor and the loss of drug resistance mitochondrial genetic markers. Genetics 76, 195–219 (1974)Google Scholar
  8. Faye, G., Kujawa, C., Fukuhara, H.: Physical and genetic organization of petite and grande yeast mitochondrial DNA. IV. In vivo transcription products of mitochondrial DNA and localization of 23S ribosomal RNA in petite mutants of Saccharmyces cerevisiae. J. molec. Biol. 88, 185–203 (1974)Google Scholar
  9. Faye, G., Bolotin-Fukuhara, M., Fukuhara, H.: Mitochondrial mutations that affect mitochondrial transfer ribonucleic acid in Saccharomyces cerevisiae. In: Genetics and biogenesis of chloroplasts and mitochondria (Bücher, Th., Neupert, W., Sebald, W., Werner, S., eds.), p. 547–555. Amsterdam: Elsevier North Holland Biomedical Press 1976Google Scholar
  10. Foury, F., Tzagoloff, A.: Localization on mitochondrial DNA of mutations leading to a loss of rutamycin-sensitive adenosine triphosphatase. Europ. J. Biochem. 68, 113–119 (1976)Google Scholar
  11. Fukuhara, H., Bolotin-Fukahara, M., Hsu, H.-J., Rabinowitz, M.: Deletion mapping of mitochondrial transfer RNA genes in Saccharomyces cerevisiae by means of cytoplasmic petite mutants. Molec. Gen. Genet. 145, 7–17 (1976)Google Scholar
  12. Heyting, C., Sanders, J.P.M.: The physical mapping of some genetic markers in the 21S ribosomal region of the mitochondrial DNA of yeast. In: The genetic function of mitochondrial DNA (Saccone, C., Kroon, A.M., eds.), pp. 273–280. Amsterdam: Elsevier North Holland Biomedical Press 1976Google Scholar
  13. Holley, R.W.: Large scale preparations of yeast “soluble” ribonucleic acid. Biochem. biophys. Res. Commun. 10, 186–188 (1963)Google Scholar
  14. Martin, N.C., Rabinowitz, M.: Transfer RNAs of yeast mitochondria. In: Genetics and biogenesis of chloroplasts and mitochondria. (Bücher, Th., Neupert, W., Sebald, W., Werner, S., eds.), pp. 749–754. Amsterdam: Elsevier North Holland Biomedical Press 1976Google Scholar
  15. Martin, N., Rabinowitz, M., Fukuhara, H.: Isoaccepting mitochondrial glutamyl-tRNA species transcribed from different regions of the mitochondrial geneome of Saccharomyces cerevisiae. J. molec. Biol. 101, 285–296 (1976)Google Scholar
  16. Martin, R., Schneller, J.M., Stahl, A.J.C., Dirheimer, G.: Isoacceptor tRNA species in yeast mitochondria-methionine and formyl methionine specific tRNAs coded by mitochondrial DNA. In: Genetics and biogenesis of chloroplasts and mitochondria (Bücher, Th., Neupert, W., Sebald, W., Werner, S., eds.), pp. 755–758. Amsterdam: Elsevier North Holland Biomedical Press 1976Google Scholar
  17. Molloy, P.L., Linnane, A.W., Lukins, H.B.: Biogenesis of mitochondria 37. Analysis of deletion of mitochondrial antibiotic resistance markers in petite strans of Saccharomyces cerevisiae. J. Bact. 122, 7–18 (1975)Google Scholar
  18. Morimoto, R., Lewin, A., Hsu, H.-J., Rabinowitz, M., Fukuhara, H.: Restriction endonuclease analysis of mitochondrial DNA from grande and genetically characterized cytoplasmic petite clones of Saccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.) 72, 3868–3872 (1975)Google Scholar
  19. Nagley, P., Linnane, A.W.: Biogenesis of mitochondria XXI. Studies on the nature of the mitochondrial genome in yeast: the degenerative effects of ethidium bromide on mitochondrial genetic information in a respiratory competent strain. J. molec. Biol. 66, 181–193 (1972)Google Scholar
  20. Nagley, P., Molloy, P.L., Lukins, H.B., Linnane, A.W.: Studies on mitochondrial gene purification using petite mutants of yeast: characterization of mutants enriched in ribosomal RNA cistrons. Biochem. biophys. Res. Commun. 57, 232–239 (1974)Google Scholar
  21. Pearson, R.L., Weiss, J.F., Kelmers, A.D.: Improved separation of transfer RNA's on polychlorotrifluoroethylene-supported reversed-phase chromatography columns. Biochim. biophys. Acta (Amst.) 228, 770–774 (1971)Google Scholar
  22. Schweyen, R.J., Steyrer, U., Kaudewitz, F., Dujon, B., Slonimski, P.P.: Mapping of mitochondrial genes in Saccharomyces cerevisiae. Population and pedigree analysis of retention or loss of four genetic markers in rho - cells. Molec. gen. Genet. 146, 117–132 (1976)Google Scholar
  23. Slonimski, P.P., Tzagoloff, A.: Localization in yeast mitochondrial DNA of mutations expressed in a deficiency of cytochrome oxidase and/or coenzyme QH2-cytochrome c reductase. Europ. J. Biochem. 61, 27–41 (1976)Google Scholar
  24. Sriprakash, K.S., Choo, K.B., Nagley, P., Linnane, A.W.: Physical mapping of mitochondrial rRNA genes in Saccharomyces cerevisiae. Biochem. biophys. Res. Commun. 69, 85–91 (1976a)Google Scholar
  25. Sriprakash, K.S., Molloy, P.L., Nagley, P., Lukins, H.B., Linnane, A.W.: Biogenesis of mitochondrial 41. Physical mapping of mitochondrial genetic markers in yeast. J. molec. Biol. 104, 485–503 (1976b)Google Scholar
  26. Trembath, M.K., Molloy, P.L., Sriprakash, K.S., Cutting, G.J., Linnane, A.W., Lukins, H.B.: Biogenesis of mitochondria 44. Comparative studies and mapping of mitochondrial oligomycin resistance mutations in yeast based on gene recombination and petite deletion analysis. Molec. gen. Genet. 145, 43–52 (1976)Google Scholar
  27. Tzagoloff, A., Akai, A., Needleman, R.B.: Properties of cytoplasmic mutants of Saccharomyces cerevisiae with specific lesions in cytochrome oxidase. Proc. nat. Acad. Sci. (Wash.) 72, 2054–2057 (1975a)Google Scholar
  28. Tzagoloff, A., Akai, a., Needleman, R.B., Zulch, G.: Assembly of the mitochondrial membrane system: Cytoplasmic mutants of Saccharomyces cerevisiae with lesions in enzymes of the respiratory chain and in the mitochondrial ATPase. J. biol. Chem. 250, 8236–8242 (1975b)Google Scholar
  29. Tzagoloff, A., Foury, F., Akai, A.: Assembly of the mitochondrial membrane system XVIII. Genetic loci on mitochondrial DNA involved in cytochrome b biosynthesis. Molec. gen. Genet. 149, 33–42 (1976a)Google Scholar
  30. Tzagoloff, A., Foury, F., Akai, A.: Resolution of the mitochondrial genome. In: The genetic function of mitochondrial DNA (Saccone, C., Kroon, A.M., eds.), pp. 155–161. Amsterdam: Elsevier North Holland Biomedical Press 1976b)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • M. Kaye Trembath
    • 1
  • Giuseppe Macino
    • 1
  • Alexander Tzagoloff
    • 1
  1. 1.The Public Health Research Institute of the City of New York, Inc.New YorkUSA

Personalised recommendations