Advertisement

Archives of oto-rhino-laryngology

, Volume 223, Issue 1, pp 1–75 | Cite as

Anatomisch-pathologische Aspekte der Elektrostimulation des ertaubten Innenohres

  • H. Spoendlin
Article

Zusammenfassung

Bei total tauben Ohren, die für eine Elektrostimulation in Frage kommen, ist das Cortische Organ in der Regel weitgehend zerstört. Hingegen wird noch eine unterschiedliche Anzahl stimulierbarer Cochlearisneurone vorhanden sein. Die Stimulationsapparatur muß also die Kodierungsfunktion der Schnecke übernehmen, eine Funktion, die eng an die strukturelle Organisation gebunden ist. Die mechano-elektrische Umwandlung in den Sinneszellen und die Tonotopie läßt sich relativ am einfachsten simulieren. Sehr schwierig wird es aber mit der komplexen Kodierungsfunktion des Cortischen Organes, die sich aus dem Zusammenspiel der beiden in ihrer strukturellen Organisation grundverschiedenen Rezeptorsysteme, der äußeren und inneren Haarzellen, sowie der afferenten und efferenten Innervation ergibt. Es spricht viel dafür, daß die eher rudimentären neuralen Verbindungen des Systems der äußeren Haarzellen eine sehr untergeordnete Rolle spielen und daß dieses System seine funktionelle Bedeutung im wesentlichen auf dem Niveau der Rezeptorzellen, die die große Mehrheit aller cochleären Sinneszellen ausmachen, hat.

Ein wesentlicher Faktor ist das Degenerationsverhalten der Cochlearisneurone, die bei Schädigung ihrer Axone eine ausgesprochene Tendenz zur sekundären und retrograden Degeneration aufweisen, der je nach Art der Schädigung bis über 95% der Neurone vollständig zum Opfer fallen. Es handelt sich dabei um einen langsamen, sich über Jahre hinziehenden, progredienten Prozeß. Einige der wenigen übrigbleibenden Neurone zeigen im Tierversuch die Möglichkeit einer reaktiven Proliferation der praeterminalen Verzweigungen, was möglicherweise auf eine spontane Kompensationstendenz des Neuronenausfalles hinweist.

Die verfügbare Information aus der Histopathologie menschlicher und tierischer Felsenbeine bei totaler Taubheit läßt auf große Unterschiede der Überlebensrate der Cochlearisneurone bei Taubheiten verschiedener Genese schließen. Im Allgemeinen führen z. B. bakterielle Labyrinthitiden oft zu totaler Zerstörung der Schnecke mit Verlust aller Neurone und knöcherner Obliteration der Schneckengänge. Andererseits machen gewisse Virusaffektionen, wie die Mumpslabyrinthitis, nur sehr selektive Schädigungen gewisser Strukturen des ductus cochlearis und scheinen die Neurone weitgehend unbehelligt zu lassen. Eine Erklärung für die scheinbare Diskrepanz zwischen der meist hochgradigen retrograden Neuronendegeneration bei experimenteller oder hereditär bedingter Zerstörung des Cortischen Organes im Tierversuch und der meist viel weniger ausgeprägten Degeneration bei entsprechenden Taubheiten des Menschen ist möglicherweise in einer viel langsameren Progredienz der retrograden Degeneration beim Menschen zu suchen.

Nach den bisher relativ spärlich vorliegenden Korrelationen zwischen getestetem Gehör und histopathologischen Befunden muß angenommen werden, daß im allgemeinen mindestens ein Drittel der normalen Cochlearisneuronenpopulation für eine brauchbare Sprachdiskrimination benötigt wird, wobei aber offenbar auch hier Ausnahmen vorkommen.

Zweifelsohne können je nach verwendeter Technik durch die Elektrodenimplantation in die Schnecke oder durch sekundäre Infekte zusätzliche Schädigungen gesetzt und eine weitere Dezimierung der noch vorhandenen Neuronen verursacht werden. Dies wäre am ehesten zu vermeiden durch Stimulation von außen, z. B. am runden Fenster, wobei allerdings die Stimulationsbedingungen wesentlich ungünstiger und die Chancen mit den noch vorhandenen neuronalen Elementen eine Diskrimination zu erreichen noch kleiner wären. Ob es möglich sein wird, eine Sprachdiskrimination durch Elektrostimulation zu erreichen, wird vor allem von der Anzahl stimulierbarer Neurone und der Möglichkeit ihrer differenzierten Stimulierung abhängen.

Schlüsselwörter

Cochlea Gehörnerv retrograde Degeneration Pathologie der Taubheit Hörprothese 

Anatomical and pathological aspects of the electrical stimulation of the deaf inner ear

Summary

In totaly deaf ears suitable for cochlear implants the organ of Corti is generally destroyed but a certain number of excitable neurons usually remain. The device for electrical stimulation should therefore replace the coding function of the cochlea which is closely related to the structural organization. The mechano-electrical transduction of the sensory cells and the tonotopical principals of the cochlea are relatively easy to simulate. Much more problems poses the complexe coding function of the organ of Corti which is the result of the interactions between of the system of outer and inner haircells and the efferent and afferent innervation components. There is evidence that the rather rudimentary neurons of the outer haircell system play only a minor role in the neural transmission and that the main function of this system relays in the receptor cells, which represent the majority of all sensory cells in the cochlea.

An essential factor is the degeneration behaviour of the cochlear neurons, which have a pronounced tendency for secondary retrograde degeneration. Depending of the type of damage, more than 95% of the cochlear neurons degenerate completely and disappear gradually in a slow process over years. Some of the few surviving neurons in experimental animals seem to have the capacity of very pronounced reactive proliferation of the preterminal branches, perhaps as a compensation of the great loss of neurons.

The available information from histopathology of temporal bones shows great differences in the survival rate of cochlear neurons in different pathological conditions. Bacterial labyrinthitis causes usually a total destruction and obliteration of the cochlea with total loss of neurons, whereas some types of viral labyrinthitis, such as mumps, affect selectively the structures of the cochlear duct and leave most cochlear neurons intact. There seems to be a certain discrepancy between the pronounced retrograde degeneration in experimental or hereditary destruction of the organ of Corti in animals and the much less pronounced degeneration in similar cases of human deafness. This might be due to the much slower progression of retrograde degeneration in humans.

On the basis of relatively rare correlations between audiometrically measured hearing and histopathology, it can be assumed that at least one third of the normal ganglion cell population is necessary for useful speech discrimination. There are however exceptions to this rule.

There is no doubt that the cochlear implants can cause additional damage to the cochlea with further reduction of the surviving neurons, either directly or as a consequence of secondary infections. This could best be avoided by stimulation from outside the cochlea, i. e. at the round-window-membrane, which however would reduce the chances to achieve useful discrimination with the available neurons. Whether it will be possible to obtain real speech discrimination with electrostimulation depends essentially from the number of the excitable neurons and from the possibility of their differential stimulation.

Key words

Cochlea Auditory nerve Retrograde degeneration Pathology of deafness Cochlear prosthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aitkin, L. M.: Tonotopic organization at higher levels of the auditory pathway. Int. Rev. Physiol. Neurophysiol. II, 249–273 (1976)Google Scholar
  2. Alport, A.: Hereditary familial congenital haemorrhagic nephritis. Br. Med. J. 1, 504 (1927)Google Scholar
  3. Andres, K. H.: Untersuchungen über morphologische Veränderungen in Spinalganglien während der retrograden Degeneration. Z. Zellforsch. 55, 49–79 (1961)Google Scholar
  4. Aran, J. M.: The electrocochleogram: recent results in children and in some pathological cases. Arch. klin. exp. Ohr.-, Nas.-, u. Kehlk.-Heilk. 198, 128–141 (1971)Google Scholar
  5. Aran, J. M.: “Neural” responses to acoustic stimulation after destruction of cochlear hair cells. Arch. Otorhinolaryngol. (in press) (1979)Google Scholar
  6. Aran, J. M., Darrouzet, J.: Observation of click-evoked compound VIII nerve responses before, during and after seven months after Kanamycin treatment in the guinea pig. Acta Otolaryngol. (Stockh.) 79, 24 (1975)Google Scholar
  7. Arnesen, A. R., Osen, K. K.: The cochlear nerve in the cat: topography, cochleotopy, and fiber spectrum. J. Comp. Neurol. 178, 661–678 (1978)Google Scholar
  8. Arnold, W., Funk, W.: Modellelektroden zur multi-axonalen Reizung des N. cochlearis. 15. Arbeits- tagung für Innenohrbiologie, Seefeld/Innsbruck 1978Google Scholar
  9. Arnold, W., Weidauer, H., Seelig, H. P.: Experimenteller Beweis einer gemeinsamen Antigenizität zwischen Innenohr und Niere. Arch. Otorhinolaryngol. 212, 99–117 (1976)Google Scholar
  10. Arnvig, J.: Causes of deafness among pupils of state schools for deaf during 1952–1953. Ugeskr. Laeger 116, 449 (1954)Google Scholar
  11. Banfai, P.: Zugangswege für das Cochlear Implant. HNO 26, 85–89 (1978)Google Scholar
  12. Barr, B., Lundstrom, R.: Deafness following maternal rubella; retrospective and prospective studies. Acta Otolaryngol. (Stockh.) 53, 413–423 (1961)Google Scholar
  13. Barton, M., Court, S., Walker, W.: Causes of severe deafness in school children in Northumberland and Durham. Br. Med. J. 1, 351 (1962)Google Scholar
  14. Bekesy, G. V.: Experiments in hearing. New York: McGraw-Hill 1960Google Scholar
  15. Benitez, J., Schuknecht, H.: Otosclerosis: a human temporal bone report. Laryngoscope 72, 1 (1962)Google Scholar
  16. Bernard, Ph., Bourret, Cl., Clermont, A., Jequier, J. C.: Anatomo-physiological correlations in deoxystreptamines ototoxity. Their value in the evaluation of new antibiotics. In: Proceedings — Inner ear biology, Vol. 68. Portmann, M., Aran, J. M. (eds.), p. 359. Paris: INSERM 1977Google Scholar
  17. Bilger, R. C.: Evaluation of subjects presently fitted with implanted auditory protheses. Ann. Otol. Rhinol. Laryngol. 86, Suppl. 38, 1–176 (1977)Google Scholar
  18. Bosher, S. K., Hallpike, C. S.: Observations on the histological features, development and pathogenesis of the inner ear degeneration of the deaf white cat. Proc. R. Soc. Edinb. B [Nat. Environ.] 162, 147–170 (1965)Google Scholar
  19. Bredberg, G.: Cellular pattern and nerve supply of the human organ of corti. Acta Otolaryngol. (Stockh.) Suppl. 236 (1968)Google Scholar
  20. Brown, K.: The genetics of childhood deafness, in deafness in childhood. McConnell, F., Ward, P. (eds.), p. 177. Nashville/Tenn.: Vanderbilt University Press 1967Google Scholar
  21. Bruns, V.: Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, rhinolophus ferrumequinum. I. Mechanical specializations of the cochlea. J. Comp. Physiol. 106, 77–86 (1976)Google Scholar
  22. Burian, K.: Round table discussion on cochlear implants. Acta Otolaryngol. (Stockh.) (in press) (1979)Google Scholar
  23. Capps, M. J., Ades, H. W.: Auditory frequency discrimination after transection of the olivocochlear bundle in squirrel monkeys. Exp. Neurol. 21, 147–158 (1968)Google Scholar
  24. Chouard, Cl. H.: Stimulation electrique de la fenêtre ronde. Proceedings of First Internat. course on multichannel cochlear implant. Paris 1978aGoogle Scholar
  25. Chouard, Cl. H.: Description of the electronic device. Proceedings of First Internat. course on multi channel cochlear implant. Paris 1978bGoogle Scholar
  26. Chouard, Cl. H.: Electrodes implantation. Proceedings of First Internat. course on multichannel cochlear implant. Paris 1978cGoogle Scholar
  27. Chouard, Ch., McLeod, P.: Implantation of multiple electrodes for rehabilitation of total deafness; preliminary report. Laryngoscope 86, 1743–1751 (1976)Google Scholar
  28. Clark, G. M.: A surgical approach for a cochlear implant: an anatomical study. J. Laryngol. Otol. 89, 9–15 (1975)Google Scholar
  29. Clark, G. M.: An evaluation of per-scalar cochlear electrode implantation techniques. An histopathological study in cats. J. Laryngol. Otol. 91, 185–199 (1977)Google Scholar
  30. Clark, G. M., Kranz, H. G., Minas, H., Nathar, J. M.: Histopathological findings in cochlear implants in cats. J. Laryngol. Otol. 89, 495–504 (1975)Google Scholar
  31. Dallos, P.: Cochlear potentials and cochlear mechanics. In: Basic mechanisms in hearing. Møller, A. R., Bostom, P. (eds), pp. 335–376. New York, London: Academic Press 1973Google Scholar
  32. Dallos, P.: Cochlear electrophysiology. In: Evoked electrical activity in the auditory nervous system. Naunton, R. E., Fernandez, C. (eds.), pp. 141–150. New York, San Francisco, London: Acad. Press 1978Google Scholar
  33. Dallos, P., Harris: Properties of auditory nerve response in absence of outer hair cells. J. Neurophysiol. 41, 365–383 (1978)Google Scholar
  34. Danish, J., Tillson, J., Levitan, M.: Multiple anomalies in congenitally deaf children. Eugen. Quart. 10, 12 (1963)Google Scholar
  35. Davis, H.: Some principles of sensory receptor action. Physiol. Rev. 41, 391–416 (1961)Google Scholar
  36. Densert, O.: Adrenergic innervation in the rabbit cochlea. Acta Otolaryngol. (Stockh.) 78, 1–12 (1974)Google Scholar
  37. Deol, M. S.: The role of inner hair cells in hearing. Nature (in press) (1979)Google Scholar
  38. Desmedt, J. E., La Grutta, V.: Function of the uncrossed efferent olivo-cochlear fibres in the cat. Nature 200, 472 (1963)Google Scholar
  39. Desmedt, J. E., Monaco, P.: Mode of action of the efferent olivo-cochlear bundle on the inner ear. Nature 192, 1263 (1961)Google Scholar
  40. Dewson, J. H.: Efferent olivo-cochlear bundle: some relationships to stimulus discrimination in noise. J. Neurophysiol. 31, 122–130 (1968)Google Scholar
  41. Dishoeck, H.: Sudden perceptive deafness and viral infection. Ann. Otol. Rhinol. Laryngol. 66, 963 (1957)Google Scholar
  42. Dubach, U., Minder, F., Antener, I.: Familial nephropathy and deafness: first observation of a family and close relatives in Switzerland. Helv. med. Acta 33, 36 (1966)Google Scholar
  43. Dunn, R. A., Morest, D. K.: Receptor synapses without synaptic ribbons in the cochlea of the cat. Proc. Natl. Acad. Sci. USA (Cell Biology) 72, 3599–3603 (1975)Google Scholar
  44. Douek, E.: A new approach to the cochlear implant. Proc. R. Soc. Med. 70, 379–383 (1977)Google Scholar
  45. Eldredge, D. H., Miller, J. D.: Physiology of hearing. Annu. Rev. Physiol. 33, 281 (1971)Google Scholar
  46. Elverland, H. H., Mair, I. W. S., Pedersen, E.: The primary afferent neurons in the hereditarily deaf white cat. In: Proceedings — Inner ear biology, Vol. 68. Portmann, M., Aran, J. M. (eds.), p. 67. Paris: INSERM 1977Google Scholar
  47. Engström, H.: On the double innervation of the sensory epithelia of the inner ear. Acta Otolaryngol. (Stockh.) 49, 109 (1958)Google Scholar
  48. Engström, H., Ades, H. W., Hawkins, J. E.: Structure and functions of the sensory hairs of the inner ear. J. Acoust. Soc. Am. 34, 1356–1363 (1962)Google Scholar
  49. Evans, E. F.: Auditory frequency selectivity and the cochlear nerve. In: Facts and models in hearing. Zwicker, E., Terhardt, E. (eds.), p. 118–129. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  50. Evans, E. F.: Cochlear nerve and cochlear nucleus. In: Handbook of sensory physiology, Vol. V/2. Keidel, W. D., Neff, W. D. (eds.), pp. 1–108. Berlin, Heidelberg, New York: Springer 1975Google Scholar
  51. Falck, B., Hillarp, N. A., Thieme, G., Dorp, A.: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348 (1962)Google Scholar
  52. Federspil, P., Schätzte, W.: Experimental evaluation of the ototoxity to Tobramycin, Sisomicin, Amikacin and Netilmicin. In: Proceedings — Inner ear biology, Vol. 68. Portmann, M., Aran, M. (eds.), p. 319. Paris: INSERM 1977Google Scholar
  53. Fex, J.: Augumentation of cochlear microphonics by stimulation of efferent fibres to the cochlea. Acta Otolaryngol. (Stockh.) 50, 540 (1959)Google Scholar
  54. Fex, J.: Auditory activity in centrifugal and centripetal cochlear fibres in cat. Acta Physiol. Scand. [Suppl. 189] 55, 5–68 (1962)Google Scholar
  55. Fisch, L.: Deafness as part of an hereditary syndrome. J. Laryngol. Otol. 73, 355 (1959)Google Scholar
  56. Flock, A.: Electron microscopic and electrophysiological studies on the lateral line canal ogan. Acta Otolaryngol. (Stockh.) Suppl. 199, 1–90 (1965)Google Scholar
  57. Flock, A.: Sensory transduction in hair cells. In: Handbook of sensory physiology, Vol. I. Löwenstein, W. R. (ed.), pp. 396–441. Berlin, Heidelberg, New York: Springer 1971Google Scholar
  58. Flock, A., Kimura, R., Lundquist, P.-G., Wersäll, J.: Morphological basis of directional sensitivity of the outer hair cells in the organ of Corti. J. Acoust. Soc. Am. 34, 1351–1355 (1962)Google Scholar
  59. Fraser, G.: A study of causes of deafness amongst 2, 355 children in special schools. In: Research into deafness in children. Fisch, L. (ed.), Oxford: Blackwell 1964Google Scholar
  60. Fraser, J., Dickie, J.: Meningitic neuro-labyrinthitis. Proc. R. Soc. Med. 13, 23 (1920)Google Scholar
  61. Friedmann, I.: Pathology of the ear. Oxford, London, Edinburgh, Melbourne: Blackwell 1974Google Scholar
  62. Friedmann, I., Fraser, G., Froggatt, P.: Pathology of the ear in the cardioauditory syndrome of Jervell and Lange-Nielsen (recessive deafness with electrocardiographic abnormalities). J. Laryngol. Otol. 80, 451 (1966)Google Scholar
  63. Fujita, S., Hayden, R.: Alport's syndrome. Temporal bone report. Arch. Otolaryngol. 90, 453 (1969)Google Scholar
  64. Gacek, R. R., Rasmussen, G. R.: Fiber analysis of the statoacoustic nerve of guinea pig, cat and monkey. Anat. Rec. 139, 455–463 (1961)Google Scholar
  65. Geisler, C. D.: Model of crossed olivo-cochlear bundle effects. J. Acoust. Soc. Am. 56, 1910–1912 (1974)Google Scholar
  66. Goodhill, V.: Syphilis of the ear: a histopathological study. Ann. Otol. Rhinol. Laryngol. 48, 676 (1939)Google Scholar
  67. Gray, A., Nelson, S.: The pathological conditions found in a case of deafmutism. Proc. R. Soc. Med. 19, 7 (1926)Google Scholar
  68. Greenwood, D. D.: Approximate calculation of the dimensions of traveling-wave envelopes in four species. J. Acoust. Soc. Am. 34, 1364–1369 (1962)Google Scholar
  69. Gregg, J., Becker, S.: Concomitant progressive deafness, chronic nephritis, and ocular lense disease. Arch. Ophthalmol. 69, 293 (1963)Google Scholar
  70. Grüneberg, H.: Hereditary lesions of the labyrinth in the mouse. Br. Med. Bull. 12, 153–157 (1960)Google Scholar
  71. Guild, S. R.: Correlations of histologic observations and the acuity of hearing. Acta Otolaryngol. (Stockh.) 17, 207–249 (1932)Google Scholar
  72. Guild, S. R. et al.: Correlations of differences in the density of innervation of the organ of Corti with differences in the acuity of hearing, including evidence as to the location in the human cochlea of the receptors for certain tones. Acta Otolaryngol. (Stockh.) 15, 269–308 (1931)Google Scholar
  73. Hall, J. G.: Hearing and primary auditory centres of the whales. Acta Otolaryngol. (Stockh.) Suppl. 224, 244–250 (1966)Google Scholar
  74. Hall, J. G., Rønning-Arnesen, A.: An electron-microscopical analysis of the square areas and diameters of the cochlear nerve fibres in cats. Acta Otolaryngol. (Stockh.) 77, 305–310 (1974)Google Scholar
  75. Hallgren, B.: Retinitis pigmentosa combined with congenital deafness with vestibulo-cerebellar ataxia and mental abnormality in a proportion of cases. A clinical and genetico-statistical study. Acta Psychiatr. Scand., Suppl. 138, 1 (1959)Google Scholar
  76. Hart, C., Naunton, R.: The ototoxity of chloroquine phosphate. Arch. Otolaryngol. 80, 407 (1964)Google Scholar
  77. Helfenstein, W., Rüegg, W., Willi, W.: Laserinterferometrische und Mössbauer-spektroskopische Untersuchung der Funktionsweise des Innenohrs. Laser und Elektro-Optik 1, 16 (1974)Google Scholar
  78. Hemmenway, W. G., Bergstrom, L. V.: The pathology of acquired viral endolabyrinthitis. In: Deafness in children, Chapter 8. McConnell, Ward (eds.). Nashville/Tenn.: Vanderbilt University Press 1967Google Scholar
  79. Hoshino, T.: Contact between the tectorial membrane and the cochlear sensory hairs in the human and the monkey. Arch. Otorhinolaryngol. 217, 53–60 (1977)Google Scholar
  80. House, W. F.: Cochlear implants. Ann. Otol. Rhinol. Laryngol. [Suppl. 27] 85, 1–93 (1976)Google Scholar
  81. House, W. F.: Round table discussion on cochlear implants. Acta Otolaryngol. (Stockh.) (in press) (1979)Google Scholar
  82. House, W. F., Urban, J.: Long term results of electrode implantation and electrical stimulation of the cochlea in man. Ann Otol. Rhinol. Laryngol. 82, 504–510 (1973)Google Scholar
  83. Hutchinson, J.: A clinical memoir on certain disease of the eye and ear consequent on inherited syphilis. London: J. Churchill 1863Google Scholar
  84. Hvidberg-Hansen, J., Jorgensen, M. B.: The inner ear in Pendred's syndrome. Acta Otolaryngol. (Stockh.) 66, 129–135 (1968)Google Scholar
  85. Illum, P., Kiaer, H., Hvidberg-Hansen, J., Søndergaard, G.: Fifteen cases of Pendred's syndrome: congenital deafness and sporadic goiter. Arch. Otolaryngol. 96, 297 (1972)Google Scholar
  86. Iurato, S.: Efferent fibres to the sensory cells of Corti's organ. Exp. Cell. Res. 27, 162 (1962)Google Scholar
  87. Iurato, S., Smith, C. A., Eldredge, D. H., Henderson, D., Carr, Ch., Ueno, Y., Cameron, S., Richter, R.: Distribution of the crossed olivocochlear bundle in the chinchilla's cochlea. J. Comp. Neurol. 182, 57–76 (1978)Google Scholar
  88. Jacoby, G., Gorini, L.: The effect of Streptomycin and other aminoglycoside antibiotics on protein synthesis. In: Antibiotics. I. Mechanism of Action. Gottlieb, D., Shaw, P. (eds.), p. 726. Berlin, Heidelberg, New York: Springer 1967Google Scholar
  89. Jervell, A., Lange-Nielsen, F.: Congenital deaf-mutism, functional heart disease with prolongation of the Q-T intervall and sudden death. Am. Heart J. 54, 59 (1957)Google Scholar
  90. Johnsson, L.-G.: Sequence of degeneration of Corti's organ and its first-order neurons. (Summary). Ann. Otol. Rhinol. Laryngol. 83, 294–303 (1974)Google Scholar
  91. Johnsson, L.-G., House, W. F.: Bilateral cochlear implants, histological findings in a pair of temporal bones. 81th Ann. Meeting Am. Laryng. Rhinol. Otol. Soc. (1978)Google Scholar
  92. Jorgensen, M., Kristensen, H., Buch, N.: Thalidomide-induced aplasia of the inner ear. J. Laryngol. Otol. 78, 1095 (1964)Google Scholar
  93. Kellerhals, B., Engström, H., Ades, H. W.: Die Morphologie des Ganglion spirale cochleae. Acta Otolaryngol. (Stockh.) Suppl. 226, 1–78 (1967)Google Scholar
  94. Kerr, A., Schuknecht, H. F.: The spiral ganglion in profound deafness. Acta Otolaryngol. (Stockh.) 65, 586–598 (1968)Google Scholar
  95. Kerr, A. G., Smith, G. D. L., Cinnamond, M. J.: Congenital syphilitic deafness. J. Laryngol. Otol. 87, 1–12 (1973)Google Scholar
  96. Kiang, N. Y. S., Moxon, E. C.: Physiological considerations in artificial stimulation of the inner ear. Ann. Otol. Rhinol. Laryngol. 81, 714–730 (1972)Google Scholar
  97. Kimura, R. S.: Hairs of the cochlear sensory cells and their attachment of the tectorial membrane. Acta Otolaryngol. (Stockh.) 61, 55 (1966)Google Scholar
  98. Klinke, R., Boerger, G., Gruber, J.: Studies on the functional significance of efferent innervation in the auditory system: afferent neuronal activity as influenced by contralaterally applied sound. Pfluegers Arch. 306, 165–175 (1969)Google Scholar
  99. Kohonen, A.: Effect of some ototoxic drugs upon the pattern and innervation of cochlear sensory cells in the guinea pig. Acta Otolaryngol. (Stockh.) Suppl. 208, 1 (1965)Google Scholar
  100. Kronester-Frei, A.: Postnatale Entwicklung des Randfasernetzes der Membrana tectoria beim Kaninchen. Laryngol. Rhinol. Otol. (Stuttg.) 55, 687–700 (1976)Google Scholar
  101. Lange, G.: Ergebnisse der Streptomycin-Ozothinbehandlung beim Morbus Mentière. Arch. klin. exp. Ohr.-, Nas.-, u. Kehlk.-Heilk. 203, 16 (1972)Google Scholar
  102. Lawrence, M., Johnsson, L. G.: The role of the organ of Corti in auditory nerve stimulation. Ann. Otol. Rhinol. Laryngol. 82, 464–472 (1973)Google Scholar
  103. Leibbrandt, C. C.: The significance of the olivo-cochlear bundle for the adaption mechanism of the inner ear. Acta Otolaryngol. (Stockh.) 59, 124–132 (1965)Google Scholar
  104. Lim, D. J.: Fine morphology of the tectorial membrane. Its relationship to the organ of Corti. Arch. Otolaryngol. 96, 199 (1972)Google Scholar
  105. Lindeman, H.: Regional differences in sensivity of the vestibular sensory epithelia to ototoxic antibiotics. Acta Otolaryngol. 67, 177 (1969)Google Scholar
  106. Lindsay, J. R.: Profound childhood deafness inner ear pathology. Ann. Otol. Rhinol. Laryngol. [Suppl. 5] 82, 1–121 (1973)Google Scholar
  107. Lindsay, J. R., Hinojosa, R.: The acoustic ganglion in profound sensoneural deafness. In: Evoked electrical activity in the auditory nervous system. Naunton, R. F., Fernandez, C. (eds.), p. 301. New York, San Francisco, London: Acad. Press 1978Google Scholar
  108. Linthicum jr., F.: Histological evidence of the causes of failure in stapes surgery. Ann. Otol. Rhinol. Laryngol. 80, 67 (1971)Google Scholar
  109. Löwenstein, O., Wersäll, J.: A functional interpretation of the electronmicroscopic structure of the sensory hairs in the cristae of the elasmobranch Raja clavata in terms of directional sensitivity. Nature 184, 1807 (1959)Google Scholar
  110. Lorente de No, R.: The sensory endings in the cochlea. Laryngoscope 47, 373–377 (1937)Google Scholar
  111. Luk, G. D., Morest, D. K., McKenna, N. M.: Origins of the crossed olivocochlear bundle shown by an acid phosphatase method in the cat. Ann. Otol. Rhinol. Laryngol. 83, 382–392 (1974)Google Scholar
  112. Lurie, M. H.: The membranous labyrinth in the congenitally deaf collie and dalmation dog. Laryngoscope 58, 279–287 (1948)Google Scholar
  113. Lynn, P. A., Sayers, B. McA.: Cochlear innervation, signal processing and their relation to auditory time intensity effects. J. Acoust. Soc. Am. 47, 525–532 (1970)Google Scholar
  114. Mair, I. W. S.: Hereditary deafness in the white cat. Acta Otolaryngol. (Stockh.) Suppl. 314, 1–48 (1973)Google Scholar
  115. Matz, G. J., Naunton, R. F.: Ototoxity of chloroquine. Arch. Otolaryngol. 88, 370–372 (1968)Google Scholar
  116. McGee, T., Olszewski, J.: Streptomycin sulfate and Dihydrostreptomycin toxity. Arch. Otolaryngol. 75, 295 (1965)Google Scholar
  117. Michelson, R. P., Merzenich, M. M., Schindler, R. A., Schindler, D. N.: Present status and future development of the cochlear prosthesis. Ann. Otol. Rhinol. Laryngol. 84, 494–498 (1975)Google Scholar
  118. Morrison, D., Schindler, R. A., Wersäll, J.: Quantitative analysis of the afferent innervation of the organ of Corti in guinea pig. Acta Otolaryngol. (Stockh.) 79, 11–23 (1975)Google Scholar
  119. Nager, F.: Mißbildungen der Schnecke und Hörvermögen. Z. Hals-, Nas.-, u. Ohrenheilk. 11, 149 (1925)Google Scholar
  120. Neff, W. D.: The effects of partial section of the auditory nerve. J. Comp. Psychol. 40, 203–215 (1947)Google Scholar
  121. Nevelin, R.: Klinik und Therapie der akuten Ertaubung. HNO 12, 116 (1964)Google Scholar
  122. Nomura, Y.: Nerve fibers in the human organ of Corti. Acta Otolaryngol. 82, 317–324 (1976)Google Scholar
  123. Otte, J., Schuknecht, H. F., Kerr, A. G.: Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation. Laryngoscope 88, 1231 (1978)Google Scholar
  124. Paparella, M. M., Shigeru: The pathology of suppurative labyrinthitis. Ann. Otol. Rhinol. Laryngol. 76, 554–586 (1967)Google Scholar
  125. Pendred, V.: Deaf mutism and goitre. Lancet II, 532 (1896)Google Scholar
  126. Perkoff, G., Stephens, F., Dolowitz, D., Tyler, F.: A clinical study of hereditary interstitial pyelonephritis. Arch. Intern. Med. 88, 191 (1951)Google Scholar
  127. Pfalz, Reinhard K. J.: Absence of a function for the crossed olivocochlear bundle under physiological conditions. Arch. klin. exp. Ohr.-, Nas.-, u. Kehlk. Heilk. 193, 89–100 (1969)Google Scholar
  128. Pialoux, P., Chouard, Cl.: Round table discussion on cochlear implants. Acta Otolaryngol. (Stockh.) (in press) (1979)Google Scholar
  129. Portmann, M., Portmann, G.: Efferent fibres of the cochlea. Arch. Otolaryngol. 59, 543 (1954)Google Scholar
  130. Ranson, S. W.: Retrograde degeneration in the spinal nerve. J. Comp. Neurol. Psychol. 16, 1 (1905)Google Scholar
  131. Rasmussen, G.: Studies of the VIIIth cranial nerve of man. Laryngoscope 50, 67–83 (1940)Google Scholar
  132. Rasmussen, G.: The olivary peduncle and other fiber projections of the superior olivary comples. J. Comp. Neurol. 84, 141–220 (1946)Google Scholar
  133. Rasmussen, G.: Further observations of the efferent cochlear bundle. J. Comp. Neurol. 99, 61 (1953)Google Scholar
  134. Reinecke, M.: Elektronenmikroskopische Untersuchungen am Ganglion spirale des Meerschweinchens. Arch. klin. exp. Ohr.-, Nas.-, u. Kehlk. Heilk. 189, 158–167 (1967)Google Scholar
  135. Rodriguez Echandia, E. L.: An electron microscopic study on the cochlear innervation. I. The receptoneural junctions at the outer hair cells. Z. Zellforsch. 78, 30–46 (1967)Google Scholar
  136. Rohman, G., Boerger, G.: Filter function of the guinea pig cochlea after degeneration of outer hair cells. Arch. Otorhinolaryngol. 215, 223–229 (1977)Google Scholar
  137. Ross, M. D.: The general visceral efferent component of the eight cranial nerve. J. Comp. Neurol. 135, 453–478 (1969)Google Scholar
  138. Rossi, G.: Anatomical organization of the efferent cochlear and vestibular system. (1968)Google Scholar
  139. Ruben, R. J., Lieberman, A. T., Bordley, J. E.: Some observation on cochlear potentials and nerve action potentials in children. Laryngoscope 72, 545–554 (1962)Google Scholar
  140. Ruby, R., Schuknecht, H.: Temporal bone pathology in Alport's syndrome (1972), Zit. aus: Schuknecht, H.: Pathology of the ear. Cambridge: Harvard University Press 1974Google Scholar
  141. Rüedi, L.: Otosclerotic lesion and cochlear degeneration. Arch. Otolaryngol. 89, 364 (1969)Google Scholar
  142. Rüedi, L., Furrer, W., Graf, K., Lüthy, F., Nager, G., Tschirren, B.: Weitere Befunde über die toxischen Wirkungen von Streptomycin und Chinin am Gehörorgan des Meerschweinchens. Bull. Schweiz. Akad. Med. Wiss. 7, 276 (1951)Google Scholar
  143. Rüedi, L., Furrer, W., Lüthy, F., Nager, G., Tschirren, B.: Further observations concerning the toxic effects of Streptomycin and Quinine on the auditory organ of guinea pigs. Laryngoscope 62, 333 (1952)Google Scholar
  144. Ryan, A., Dallos, P.: Effect of absence of cochlear outer hair cells on behavioural auditory threshold. Nature 253, 44–46 (1975)Google Scholar
  145. Saunders, W., Lippy, W.: Sudden deafness and Bell's palsy: a common cause. Ann. Otol. Rhinol. Laryngol. 68, 830 (1959)Google Scholar
  146. Schindler, R. A., Merzenich, M. M.: Chronic intracochlear electrode implantation: cochlear pathology a d acoustic nerve survival. Ann. Otol. Rhinol. Laryngol. 83, 202–215 (1974)Google Scholar
  147. Schindler, R. A., Merzenich, M. M., White, M. W., Bjorkroth, B.: Multielectrode intracochlear implants. Nerve survival and stimulation patterns. Arch. Otolaryngol. 103, 691–699 (1977)Google Scholar
  148. Schreiner, L.: Klinische und histologische Untersuchungen zum Alport-Syndrom. Arch. klin. exp. Ohr.-, Nas.-, u. Kehlk.-Heilk. 191, 618 (1968)Google Scholar
  149. Schuknecht, H. F.: Lesions of the organ of Corti. Trans. Am. Acad. Ophthalmol. Otolaryngol. 57, 366 (1953)Google Scholar
  150. Schuknecht, H.: Ablation therapy in the management of Meniere's disease. Acta Otolaryngol. (Stockh.) Suppl. 132, 1 (1957)Google Scholar
  151. Schuknecht, H. F.: Pathology of the ear. Cambridge, Mass.: Harvard University Press 1974Google Scholar
  152. Schuknecht, H. F.: Inner ear dysplasia. Proceedings of Workshop on the Ear (in press) 1979aGoogle Scholar
  153. Schuknecht, H. F.: Cochlear otosclerosis. A continuing fantasy. Arch. Otorhinolaryngol. (in press) (1979)bGoogle Scholar
  154. Schuknecht, H. F., Churchill, J., Doran, R.: Acetylcholinesterase in the cochlea. Laryngoscope 66, 1 (1956)Google Scholar
  155. Schuknecht, H. F., Kimura, R. S., Naufal, P. M.: The pathology of sudden deafness. Acta Otolaryngol. (Stockh.) 76, 75–97 (1973)Google Scholar
  156. Schuknecht, H. F., Woellner, R.: Hearing losses following partial section of the cochlear nerve. Laryngoscope 63, 441 (1953)Google Scholar
  157. Shambaugh, G., Wallner, L., Greene, L., Shambaugh jr., G.: Severe deafness in adults: a clinical study. Arch. Otolaryngol. 18, 430 (1933)Google Scholar
  158. Simmons, F. B.: Electrical Stimulation of the auditory nerve in man. Arch. Otolaryngol. 84, 2–54 (1966)Google Scholar
  159. Simmons, F. B.: Permanent intracochlear electrodes in cats, tissue tolerance and cochlear microphonics. Laryngoscope 77, 171–186 (1967)Google Scholar
  160. Simmons, F. B.: Cochlear implants. Arch. Otolaryngol. 89, 61–69 (1969)Google Scholar
  161. Simmons, F. B.: Round talbe discussion on cochlear implants. Acta Otolaryngol. (Stockh.) (in press) (1979)Google Scholar
  162. Smith, C. A.: Innervation of the cochlea of the guinea pig by use of the Golgi stain. Ann. Otol. Rhinol. Laryngol. 84, 443 (1975)Google Scholar
  163. Smith, C. A., Rasmussen, G. L.: Recent observations on the olivo-cochlear bundle. Ann. Otol. Rhinol. Laryngol. 72, 489–507 (1963)Google Scholar
  164. Smith, C. A., Sjöstrand, F.: A synaptic structure in the hair cell of the guinea pig cochlea. J. Ultrastruct. Res. 5, 184 (1961)Google Scholar
  165. Spoendlin, H.: Submikroskopische Organisation der Sinneselemente im Cortischen Organ des Meerschweinchens. Pract. oto-rhino-laryng. (Basel) 21, 197 (1959)Google Scholar
  166. Spoendlin, H.: The organization of the cochlear receptor. Adv. Otorhinolaryngol. 13, 1–231 (1966a)Google Scholar
  167. Spoendlin, H.: Zur Ototoxizität des Streptomycins. Pract. oto-rhino-laryng. 28, 305 (1966b)Google Scholar
  168. Spoendlin, H.: Ultrastructure and peripheral innervation pattern of the receptor in relation to the first coding of the acoustic message. In: Hearing mechanisms in vertebrates. De Reuck, A. V. S., Knight, J. (eds.), pp. 89–119. London: Churchill 1968Google Scholar
  169. Spoendlin, H. H.: Innervation patterns in the organ of Corti of the cat. Acta Otolaryngol. (Stockh.) 67, 239–254 (1969)Google Scholar
  170. Spoendlin, H. H.: Structural basis of peripheral frequency analysis. In: Frequency analysis and periodicity detection in hearing. Plomp, R., Smoorenburg, F. G. (eds.), p. 2–36. Leiden: Sijthoff 1970Google Scholar
  171. Spoendlin, H. H.: Degeneration behavior of the cochlear nerve. Arch. klin. exp. Ohr.-, Nas.-, u. Kehlk.-Heilk. 200, 275–291 (1971)Google Scholar
  172. Spoendlin, H.: Innervation densities of the cochlea. Acta Otolaryngol. (Stockh.) 73, 235–248 (1972)Google Scholar
  173. Spoendlin, H.: The innervation of the cochlear receptor. In: Basic mechanisms in hearing. Möller (ed.), p. 185–234. New York, London: Academic Press 1973Google Scholar
  174. Spoendlin, H.: Neuroanatomy of the cochlea. In: Facts and models in hearing. Zwicker, E., Terhardt, E. (eds.), pp. 18–32. Berlin, Heidelberg, New York: Springer 1974aGoogle Scholar
  175. Spoendlin, H.: Optic and cochleovestibular degenerations in hereditary ataxias. II. Temporal bone pathology in two cases of Friedreich's ataxia with vestibulo-cochlear disorders. Brain 97, 41–48 (1974b)Google Scholar
  176. Spoendlin, H.: Relation entre structure et fonction du recepteur vestibulaire. Acta Otorhinolaryngol. Belg. 29, 75–91 (1975a)Google Scholar
  177. Spoendlin, H.: Neuroanatomical basis of cochlear coding mechanisms. Audiology 14, 383–407 (1975b)Google Scholar
  178. Spoendlin, H.: Retrograde degeneration of the cochlear nerve. Acta Otolaryngol. 79, 266–275 (1975c)Google Scholar
  179. Spoendlin, H.: Neuro-anatomy of the cochlea. Audiologia e Foniatria, 1, 1–23 (1978)Google Scholar
  180. Spoendlin, H.: Neural connections of the outer hair cell system. Acta Otolaryngol. (Stockh.) (in press) (1979)Google Scholar
  181. Spoendlin, H. H., Baumgartner, H.: Electrocochleography and cochlear pathology. Acta Otolaryngol. (Stockh.) 83, 130–135 (1977)Google Scholar
  182. Spoendlin, H., Brun, J. P.: Relation of structural damage to exposure time and intensity in acoustic trauma. Acta Otolaryngol. (Stockh.) 75, 220–226 (1973)Google Scholar
  183. Spoendlin, H., Brun, J. B.: The bloc-surface technique for evaluation of cochlear pathology. Arch. Otolaryngol. 208, 137 (1974)Google Scholar
  184. Spoendlin, H., Gacek, R.: Electron microscopic studies on the efferent and afferent innervation of the organ of Corti in the cat. Ann. Otol. Rhinol. Laryngol. 72, 1 (1963)Google Scholar
  185. Spoendlin, H., Lichtensteiger, W.: The adrenergic innervation of the labyrinth. Acta Otolaryngol. (Stockh.) 61, 423–434 (1966)Google Scholar
  186. Spoendlin, H., Suter, R.: Regeneration in the VIII nerve. Acta Otolaryngol. (Stockh.) 81, 228–236 (1976)Google Scholar
  187. Stupp, H.: Untersuchung der Antibiotikaspiegel in den Innenohrflüssigkeiten und ihre Bedeutung für die spezifische Ototoxizität der Amino-Glykosidantibiotika. Acta Otolaryngol. (Stockh.), Suppl. 262 (1970)Google Scholar
  188. Suga, F., Lindsay, J. R.: Inner ear degeneration in acoustic neurinoma. Ann. Otol. Rhinol. Laryngol. 85, 343–358 (1976)Google Scholar
  189. Terayama, Y., Holz, E., Beck, Ch.: Adrenergic innervation of the cochlea. Ann. Otol. Rhinol. Laryngol. 75, 1–18 (1966)Google Scholar
  190. Thorn, W., Arnold, W.: Elektronenmikroskopische Untersuchungen am Ganglion spirale cochleae von Meerschweinchenfeten. Verh. Anat. Ges. 70, 517–524 (1976)Google Scholar
  191. Tonndorf, J.: Cochlear prosthesis. A state-of-the-art review. Ann. Otol. Rhinol. Laryngol. [Suppl. 44] 86, 2 (1977)Google Scholar
  192. Trahiotis, C., Elliot, D. N.: Behavioral investigation of some possible effects of sectioning the crossed olivo-cochlear bundle. J. Acoust. Soc. Am. 47, 592–596 (1970)Google Scholar
  193. Trincker, D.: Bestandspotentiale im Bogengangsystem des Meerschweinchens und ihre Änderungen bei experimentellen Cupula-Ablenkungen. Pfluegers Arch. ges. Physiol. 264, 351 (1957)Google Scholar
  194. Usher, C.: On the inheritance of retinitis pigmentosa with notes of case. Roy. Lond. ophthal. Hosp. Rep. 19, 130 (1914)Google Scholar
  195. Vernon, J.: Round window stimulation in man. In: Proceedings of the First International Conference on Electrical Stimulation of the Acoustic Nerve as a Treatment for Profound Sensorineural Deafness in Man. Merzenich, M., Schindler, R. A., Sooy, F. A. (eds.), p. 63. San Francisco, Calif.: Velo-Bind, Inc. 1974Google Scholar
  196. Vernon, J., Brummet, B., Doyle, P., Dennison, R.: Cochlear potential evaluation of an implantable hearing aid. Surg. Forum 21, 491–493 (1970)Google Scholar
  197. Waardenburg, P.: A new syndrome combining development anomalies of the eyelids, eyebrows, and nose root with pigmentary defects of the iris and head hair and with congential deafness. Am. J. Hum. Genet. 3, 195 (1951)Google Scholar
  198. Warr, W. B.: Localization of olivocochlear neurons by means of retrograde axonal transport of horseradish peroxidase. Anat. Rec. 175, 464 (1973)Google Scholar
  199. Warr, W. B.: The olivocochlear bundle: its origins and terminations in the cat. In: Evoked electrical activity in the auditory nervous system. Naunton, R. F., Fernández, C. (eds.). New York, San Francisco, London: Academic Press 1978Google Scholar
  200. Weidauer, H., Arnold, W.: Strukturelle Veränderungen am Hörorgan beim Alport-Syndrom. Z. Laryngol. Rhinol. 55, 6–15 (1976)Google Scholar
  201. Wersäll, J., Hawkins jr., J.: The vestibular sensory epithelia in the cat labyrinth and their reactions in chronic Streptomycin intoxication. Acta Otolaryngol. (Stockh.) 54, 1 (1962)Google Scholar
  202. Wever, E. G., William, D.: A further study of the effects of partial section of the auditory nerve. J. Comp. Psychol. 40, 217–226 (1947)Google Scholar
  203. Wiederhold, M. L., Kiang, N. Y. S.: Effects of electrical stimulation of the crossed olivocochlear bundle on single-auditory-nerve fibres in the cat. J. Acoust Soc. Am. 48, 950–965 (1970)Google Scholar
  204. Winter, L., Cram, B., Banovetz, J.: Hearing loss in hereditary renal disease. Arch. Otolaryngol. 88, 238 (1968)Google Scholar
  205. Wright, C. G., Preston, R. E.: Degeneration and distribution of efferent nerve fibers in the guinea pig organ of Corti. A light and scanning electron microscopic study. Brain Res. 58, 1–23 (1973)Google Scholar
  206. Ylikoski, J., Collan, Y., Palva, T.: Ultrastructural features of spiral ganglion cells. A study of patients with hearing loss of varying origins. Arch. Otolaryngol. 104, 84–88 (1978)Google Scholar
  207. Zwislocki, J. J., Sokolich, W. G.: Neuromechanical frequency analysis in the cochlea. In: Facts and models in hearing. Zwicker, E., Terhardt, E. (eds.), P. 107–117. Berlin, Heidelberg, New York: Springer 1974Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • H. Spoendlin
    • 1
  1. 1.Universitäts-Klinik für Hals-, Nasen-, OhrenkrankheitenInnsbruckÖsterreich

Personalised recommendations