Archives of Microbiology

, Volume 144, Issue 1, pp 62–66 | Cite as

Glucose as an energy donor in acetate growing Acinetobacter calcoaceticus

  • Roland H. Müller
  • Wolfgang Babel
Original Papers


Since glucose can be oxidized but not assimilated by Acinetobacter calcoaceticus 69-V the question arose whether energy generated by glucose oxidation can help incorporate carbon from heterotrophic substrates and, if so, what the efficiency of ATP production is like. For this reason this species was grown in the chemostat on acetate. After having reached steady state conditions an increasing concentration of glucose was added. This led to an increase in the biomass level from about 0.4 g/g for growth on acetate alone to 0.6–0.65 g/g in the presence of glucose, independently of either the growth rate or the steepness of the glucose gradient used. This upper value approximates about the limit of the carbon conversion efficiency calculated for non-glycolytic substrates. Glucose was almost exclusively oxidized to gluconic acid, 2- and 5-ketogluconates, and pentose 5-phosphates were found only in traces. These results demonstrate that glucose functions as an additional energy source in Acinetobacter calcoaceticus 69-V. From the transient behaviour of biomass increase and the mixing proportion at which the maximum growth yield on acetate in the presence of glucose was obtained it followed that two mol of ATP must have been generated per mol of glucose oxidized. This property is discussed in terms of coupling glucose dehydrogenase with the respiratory chain.

Key words

Acinetobacter calcoaceticus Continuous cultivation Acetate growth Glucose oxidation Energy gain Maximum carbon conversion efficiency 



glucose oxidized to gluconic acid


amount of glucose necessary for complete substitution of Sd


inlet concentration of the limiting carbon substrate

Sa and Sd

assimilated and dissimilated part respectively of the carbon substrate




ATP gain from complete oxidation to CO2 of acetate (P/O=2)


ATP gain from oxidation of glucose to gluconic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asperger O, Kleber HP, Aurich H (1978) Zytochrom-Zusammensetzung von Acinetobacter calcoaceticus. Acta Biol Med Ger 37:191–198Google Scholar
  2. Asperger O, Borneleit P, Kleber HP (1981) Untersuchungen zum Elektronentransport in Acinetobacter calcoaceticus. Abhdl Akad Wiss DDR 3:259–270Google Scholar
  3. Babel W (1979) Bewertung von Substraten für das mikrobielle Wachstum auf der Grundlage ihres Kohlenstoff/Energie-Verhältnisses. Z Allg Mikrobiol 19:671–677Google Scholar
  4. Babel W, Müller RH (1985a) Mixed substrate utilization in microorganisms. Biochemical aspects and energetics. J Gen Microbiol 131:39–45Google Scholar
  5. Babel W, Müller RH (1985b) The influence of carbon catabolism on the auxiliary substrate effect. Acta biotechnol 5:333–338Google Scholar
  6. Babel W, Müller RH (1985c) Correlation between cell composition and carbon conversion efficiency. A theoretical study. Appl Microbiol Biotechnol 22:201–207Google Scholar
  7. Babel W, Müller RH, Markuske KD (1983) Improvement of growth yield of yeast on glucose to the maximum by using an additional energy source. Arch Microbiol 136:203–208Google Scholar
  8. Baumann P, Doudoroff M, Stanier RY (1968) A study of the Moraxella group. J Bacteriol 95:1520–1541Google Scholar
  9. Drews G (1968) Mikrobiologisches Praktikum für Naturwissenschaftler. Springer, Berlin Heidelberg New YorkGoogle Scholar
  10. Duine JA, Frank JznJ, De Ruiter LG (1979a) Isolation of a methanol dehydrogenase with a functional coupling to cytochrome c. J Gen Microbiol 115:523–526Google Scholar
  11. Duine JA, Frank JznJ, Van Zeeland JK (1979b) Glucose dehydrogenase form Acinetobacter calcoaceticus. A “quinoprotein”. FEBS-Lett 108:443–446Google Scholar
  12. Juni E (1978) Genetics and physiology of Acinetobacter. Annu Rev Microbiol 32:349–371Google Scholar
  13. Kleber HP, Aurich H (1973) Einfluß von n-Alkanen auf die Synthese der Enzyme des Glyoxylatzyklus in Acinetobacter calcoaceticus. Z Allg Mikrobiol 13:473–480Google Scholar
  14. Kleber HP, Aurich H (1974) Verhalten der Enzyme des Citratzyklus während der n-Alkan-Assimilation bei Acinetobacter calcoaceticus. Z Allg Mikrobiol 14:575–580Google Scholar
  15. Kleber HP, Schöpp W, Aurich H (1973) Verwertung von n-Alkanen durch einen Stamm von Acinetobacter calcoaceticus. Z Allg Mikrobiol 13:445–447Google Scholar
  16. Kleber HP, Haferburg D, Asperger O, Schmidt M, Aurich H (1984) Aufnahme und Oxidation von Monosacchariden bei Acinetobacter calcoaceticus. Z Allg Mikrobiol 24:691–701Google Scholar
  17. Lanning MC, Cohen SS (1951) The detection and estimation of 2-ketogluconic acids. J Biol Chem 189:109–114Google Scholar
  18. Müller RH, Babel W (1978) Reinigung und Eigenschaften der 3-Hexulosephosphat-Synthase aus dem fakultativ methylotrophen Bakterium MB 58. Wiss Z Karl Marx Univ Math Naturwiss R 27:67–79Google Scholar
  19. Müller RH, Babel W (1984) Glucose as an auxiliary substrate. The influence of its carbon catabolism on the maximum carbon conversion efficiency. Appl Microbiol Biotechnol 20:195–200Google Scholar
  20. Müller RH, Babel W (1986) Emulsifier formation with Acinetobacter, search for a excretion-reduced mutant of Acinetobacter calcoaceticus 69-V. J Basic Microbiol (in press)Google Scholar
  21. Müller RH, Markuske KD, Babel W (1985) Formate gradients as a means for detecting the maximum carbon conversion efficiency of heterotrophic substrates. The correlation between formate utilization and biomass increase. Biotechnol Bioeng (in press)Google Scholar
  22. Payne WJ (1970) Energy yields and growth of heterotrophs. Annu Rev Microbiol 24:17–52Google Scholar
  23. Rauen HM (1964) Biochemisches Taschenbuch. Springer, Berlin Göttingen Heidelberg New YorkGoogle Scholar
  24. Rosenberg E, Zuckerberg A, Rubinovitz C, Gutnick DL (1979) Emulsifier of Acinetobacter RAG-1: Isolation and emulsifying properties. Appl Environm Microbiol 37:402–408Google Scholar
  25. Schramm M (1956) Spectrophotometric determination of 5-ketogluconate. Anal Chem 28:963–965Google Scholar
  26. Stouthamer AH (1973) A theoretical study on the amount of ATP required for the synthesis of microbial cell material. Antonie van Leeuwenhoek J Microbiol Serol 39:545–565Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Roland H. Müller
    • 1
  • Wolfgang Babel
    • 1
  1. 1.Institute of BiotechnologyAcademy of Sciences of the GDRLeipzigGerman Democratic Republic

Personalised recommendations