Archives of Microbiology

, Volume 140, Issue 2–3, pp 291–293 | Cite as

Carbonic anhydrase, carbondioxide levels and growth of Nitrosomonas

  • Leland S. Jahnke
  • Celine Lyman
  • Alan B. Hooper
Short Communications


The ammonia oxidizing bacterium Nitrosomonas europaea was grown either (a) with added bicarbonate in the absence of added CO2 (bubbled through the culture), (b) with added bicarbonate plus low added CO2 (0.03% v/v), or (c) without added bicarbonate with high added CO2 (1% v/v). Cell doubling times of 12 h were observed in 1% cultures; doubling times of 2 to 3-fold longer wre found with 0.03% CO2 and/or bicarbonate grown cultures. The specific activity of carbonic anhydrase was 40–80% lower in cultures grown on 1% CO2. These results are compared with those in heterotrophic and photosynthetic microorganisms.

Key words

Nitrosomonas europaea Carbonic anhydrase Carbon dioxide Bicarbonate Growth rates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler L, Brundell J, Falkbring SO, Nyman PO (1972) Carbonic anhydrase from Neisseria sicca, strain 6021. I. Bacteria growth and purification of the enzyme. Biochim Biophys Acta 284:298–310Google Scholar
  2. Badger MR, Kaplan A, Berry JA (1978) A mechanism for concentrating CO2 in Chlamydomonas reinhardtii and Anabaena variabilis and its role in photosynthetic CO2 fixation. Carnegie Inst Year-book 77:251–261Google Scholar
  3. Berry J, Boynton J, Kaplan A, Badger M (1976) Photosynthesis and growth of Chlamydomonas reinhardtii as a function of CO2 concentration. Carnegie Inst Yearbook 75:423–432Google Scholar
  4. Beudeker RF, Cannon GC, Kuenen JG, Shively JM (1980) Relations between D-ribulose-1,5-bisphosphate carboxylase, carboxysomes and CO2 fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat. Arch Microbiol 124:185–189Google Scholar
  5. Döhler G (1974) Carboanhydraseaktivität und Enzyme des Glykolatweges in der Blaualge Anacystis nidulans. Planta 117:97–99Google Scholar
  6. Graham D (1982) Carbonic anhydrases (carbonate dehydratases) from plants. In: Mitsui A, Black CC (eds) CRC handbook of biosolar resources, vol 1, pt 1. CRC Press Inc, Boca Raton, Florida, pp 215–229Google Scholar
  7. Graham D, Reed M (1971) Carbonic anhydrase and the regulation of photosynthesis. Nature (New Biol) 231:81–83Google Scholar
  8. Hogetsu D, Miyachi S (1979) Role of carbonic anhydrase in photosynthetic CO2 fixation in Chlorella. Pl Cell Physiol 220:747–756Google Scholar
  9. Hooper AB (1968) A nitrite-reducing enzyme from Nitrosomonas europaea preliminary characterization with hydroxyl amines as an electron donor. Biochim Biophys Acta 162:49–65Google Scholar
  10. Hooper AB, Erickson RH, Terry KR (1972) Electron transport systems of Nitrosomonas: isolation of a membrane-envelope fraction. J Bacteriol 110:430–438Google Scholar
  11. Ingle R, Colman B (1976) The relationship between carbonic anhydrase activity and glycolate excretion in the blue-green alga Coccochloris peniocystis. Planta 128:217–223Google Scholar
  12. Kern DM (1960) The hydration of carbon dioxide. J Chem Educ 37:14–23Google Scholar
  13. Maxwell PC (1976) Isolation and characterization of hydroxylamine dehydrogenase from the chemoautotroph Nitrosomonas europaea. Doctoral dissertation, University of MinnesotaGoogle Scholar
  14. Nelson EB, Cenedella A, Tolbert NE (1969) Carbonic anhydrase levels in Chlamydomonas. Phytochem 8:2305–2306Google Scholar
  15. Pocker Y, Sarkanen S (1978) Carbonic anhydrase: structure, catalytic versatility, and inhibition. Adv Enzymol 47:149–274Google Scholar
  16. Raven JA, Glidewell SM (1978) C4 characteristics of photosynthesis in the C3 alga Hydrodictyon africanum. Plant Cell Envir 1:185–197Google Scholar
  17. Rickli E, Ghazanfar S, Gibbons B, Edsall J (1964) Carbonic anhydrases from human erythrocytes. J Biol Chem 239:1065–1078Google Scholar
  18. Romanova AK, Rusinova NG, Kornitskaya VM (1972) Participation of carbonic anhydrase in chemosynthetic assimilation of carbonic acid in Thiobacillus thiooxidans 58R. Dokl Biochem 203:125–127Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Leland S. Jahnke
    • 1
  • Celine Lyman
    • 2
  • Alan B. Hooper
    • 2
  1. 1.Department of Botany and Plant PathologyUniversity of New HampshireDurhamUSA
  2. 2.Department of Genetics and Cell BiologyUniversity of MinnesotaSt. PaulUSA

Personalised recommendations