Skip to main content
Log in

Potassium accumulation in growing Methanobacterium thermoautotrophicum and its relation to the electrochemical proton gradient

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cultures of Methanobacterium thermoautotrophicum (Marburg) growing on media low in potassium accumulated the cation up to a maximal concentration gradient ([K+]intracellular/[K+]extracellular) of approximately 50,000-fold. Under these conditions, the membrane potential was determined by measuring the equilibrium distribution of the lipophilic cation (14C) tetraphenylphosphonium (TPP+). This cation was accumulated by the cells 350-to 1,000-fold corresponding to a membrane potential (inside negative) of 170–200 mV. The pH gradient, as measured by equilibrium distribution of the weak acid, benzoic acid, was found to be lower than 0.1 pH units (extracellular pH=6.8). The addition of valinomycin (0.5–1 nmol/mg cells) to the culture reduced the maximal concentration gradient of potassium from 50,000-to approximately 500-fold, without changing the membrane potential. After dissipation of the membrane potential by the addition of 12C-TTP+ (2 μmol/mg cells) or tetrachlorosalicylanilide (3 nmol/mg cells), a rapid and complete efflux of potassium was observed.

These data indicate that potassium accumulation in the absence of valinomycin is not in equilibrium with the membrane potential. It is concluded that at low extracellular K+ concentrations potassium is not accumulated by M. thermoautotrophicum via an electrogenic uniport mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TPP+ :

Tetra phenylphosphonium bromide

DTE:

Dithioerythritol

TCS:

3,5,3′,4′-Tetrachlorosalycylanilide

References

  • Bakker EP, Mangerich WE (1981) Interconversion of components of the bacterial proton motive force by electrogenic potassium transport. J Bacteriol 147:820–826

    Google Scholar 

  • Bakker EP, Harold FM (1980) Energy coupling to potassium transport in Streptococcus faecalis. J Biol Chem 255:433–440

    Google Scholar 

  • Balch WE, Wolfe RS (1979) Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium. J Bacteriol 137:264–273

    Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296

    Google Scholar 

  • Benyoucef M, Rigaud JL, Leblanc G (1982a) Cation transport mechanisms in Mycoplasma mycoides var. Capri cells. Na+ dependent K+ accumulation. Biochem J 208:529–538

    Google Scholar 

  • Benyoucef M, Rigaud JL, Leblanc G (1982b) Cation transport mechanisms in Mycoplasma mycoides var. Capri cells. The nature of the link between K+ and Na+ transport. Biochem J 208:539–547

    Google Scholar 

  • Blaut M, Gottschalk G (1984a) Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur J Biochem 141:217–222

    Google Scholar 

  • Blaut M, Gottschalk G (1984b) Protonmotive force driven synthesis of ATP during methane formation from molecular hydrogen and formaldehyde or carbon dioxide in Methanosarcina barkeri. FEMS Microbiol Lett 24:103–107

    Google Scholar 

  • Brandis A, Thauer RK, Stetter KO (1981) Relatedness of strains ΔH and Marburg of Methanobacterium thermoautotrophicum. Zbl Bakt Hyg I Abt Orig C 2:311–317

    Google Scholar 

  • Butsch BM, Bachofen R (1982) Measurement of the membrane potential in Methanobacterium thermoautotrophicum. Experientia 38:1377

    Google Scholar 

  • Epstein W, Laimins L (1980) Potassium transport in Escherichia coli: diverse systems with common control by osmotic forces. TIBS 5:21–23

    Google Scholar 

  • Erecińska M, Deutsch CJ, Davis JS (1981) Energy coupling to K+ transport in Paracoccus denitrificans. J Biol Chem 256:278–284

    Google Scholar 

  • Harold FM (1972) Conservation and transformation of energy by bacterial membranes. Bacteriol Rev 36:172–230

    Google Scholar 

  • Harold FM (1977a) Membranes and energy transduction in bacteria. Curr Top Bioenerg 6:83–149

    Google Scholar 

  • Harold FM (1977b) Ion currents and physiological functions in microorganisms. Ann Rev Microbiol 31:181–203

    Google Scholar 

  • Harold FM, Altendorf K (1974) Cation transport in bacteria: K+, Na+, H+. Curr Top Membr Transport 5:1–50

    Google Scholar 

  • Hassan HM, MacLeod RA (1975) Kinetics of Na+-dependent K+ ion transport in a marine pseudomonad. J Bacteriol 121: 160–164

    Google Scholar 

  • Heefner DL (1982) Transport of H+, K+, Na+ and Ca2+ in Streptococcus. Mol Cell Biochem 44:81–106

    Google Scholar 

  • Hugentobler G, Heid I, Solioz M (1983) Purification of a putative K+-ATPase from Streptococcus faecalis. J Biol Chem 258: 7611–7617

    Google Scholar 

  • Jarrell KF, Sprott GD (1981) The transmembrane electrical potential and intracellular pH in methanogenic bacteria. Can J Microbiol 27:720–728

    Google Scholar 

  • Jarrell KF, Sprott GD (1982) Nickel transport in Methanobacterium bryantii. J Bacteriol 151:1195–1203

    Google Scholar 

  • Jarrell KF, Sprott GD (1983a) The effects of inophores and metabolic inhibitors on methanogenesis and energy-related properties of Methanobacterium bryantii. Arch Biochem Biophys 225:33–41

    Google Scholar 

  • Jarrell KF, Sprott GD (1983b) Measurement and significance of the membrane potential in Methanobacterium bryantii. Biochim Biophys Acta 725:280–288

    Google Scholar 

  • Jarrell KF, Brid SE, Sprott GD (1984) Sodium-dependent isoleucin transport in the methanogenic archaebacterium Methanococcus voltae. FEBS Lett 166:375–361

    Google Scholar 

  • Kobayashi H (1982) Second system for potassium transport in Streptococcus faecalis. J Bacteriol 150:506–511

    Google Scholar 

  • Kroll RG, Booth IR (1983) The relationship between intracellular pH, the pH gradient and potassium transport in Escherichia coli. Biochem J 216:709–716

    Google Scholar 

  • Laimins LA, Rhoads DB, Altendorf K, Epstein W (1978) Identification of the structural proteins of an ATP-driven potassium transport system in Escherichia coli. Proc Natl Acad Sci USA 75:3216–3219

    Google Scholar 

  • Lolkema JS, Abbing A, Hellingwerf KJ, Konings WN (1983) The transmembrane electrical potential in Rhodopseudomonas sphaeroides determined from the distribution of tetraphenylphosphonium after correction for its binding to cell components. Eur J Biochem 130:287–292

    Google Scholar 

  • Padan E, Zilberstein D, Schuldiner S (1981) pH homeostasis in bacteria. Biochim Biophys Acta 650:151–166

    Google Scholar 

  • Pressman B (1976) Biological application of ionophores. Ann Rev Biochem 45:501–530

    Google Scholar 

  • Rhoads DB, Epstein W (1977) Energy coupling to net K+ transport in Escherichia coli K-12. J Biol Chem 252:1394–1401

    Google Scholar 

  • Rottenberg H (1976) The driving force for proton(s) metabolites contrasport in bacterial cells. FEBS Lett 66:159–163

    Google Scholar 

  • Rottenberg H (1979) The measurement of membrane potential and ΔpH in cells, organelles, and vesicles. In: Fleischer S, Packer L (eds) Methods in enzymology, vol LV. Academic Press, New York San Francisco London, pp 547–569

    Google Scholar 

  • Scherer P, Lippert H, Wolff G (1983) Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry. Biological Trace Element Research 5:149–163

    Google Scholar 

  • Schönheit P, Perski HJ (1983) ATP synthesis driven by a potassium diffusion potential in Methanobacterium thermoautotrophicum is stimulated by sodium. FEMS Microbiol Lett 20:263–267

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K s, μmax, Y s) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65

    Google Scholar 

  • Shioi JI, Matsuura S, Imae Y (1980) Quantitative measurements of proton motive force and motility in Bacillus subtilis. J Bacteriol 144:891–897

    Google Scholar 

  • Silver, S (1978) Transport of cations and anions. In: Rosen BP (ed) Bacterial transport, Microbiology Series 4. Dekker Inc, New York Basel, pp 221–324

    Google Scholar 

  • Sorensen EN, Rosen BP (1980) Effects of sodium and lithium ions on the potassium ion transport systems of Escherichia coli. Biochemistry 19:1458–1462

    Google Scholar 

  • Sprott GD, Jarrell KF (1981) K+, Na+, and Mg2+ content and permeability of Methanospirillum hungatei and Methanobacterium thermoautotrophicum. Can J Microbiol 27:444–451

    Google Scholar 

  • Suelter CH (1970) Enzymes activated by monovalent cations. Science 168:789–795

    Google Scholar 

  • Wieczorek L, Altendorf K (1979) Potassium transport in Escherichia coli. Evidence for a K+-transport adenosine-5′-triphosphatase. FEBS Lett 98:233–236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönheit, P., Beimborn, D.B. & Perski, HJ. Potassium accumulation in growing Methanobacterium thermoautotrophicum and its relation to the electrochemical proton gradient. Arch. Microbiol. 140, 247–251 (1984). https://doi.org/10.1007/BF00454936

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00454936

Key words

Navigation