Archives of Microbiology

, Volume 140, Issue 2–3, pp 206–211 | Cite as

Nickel and iron incorporation into soluble hydrogenase of Alcaligenes eutrophus

  • Cornelius G. Friedrich
  • Sergej Suetin
  • Michael Lohmeyer
Original Papers


Qualitative and quantitative determination of proteins of the soluble hydrogenase (hydrogen: NAD+ oxidoreductase, EC from Alcaligenes eutrophus H16 was done by crossed and rocket immunoelectrophoresis. Under metal sufficient growth conditions active hydrogenase (mol. wt. 200,000) cross reacting material (crmI) was formed. Under nickel limitation crmIII hydrogenase proteins were formed exhibiting diaphorase activity with a mol. wt. of 92,000±5,000. Other immunochemically active hydrogenase proteins present in significant amounts were not detected in the absence of nickel. Nickel-or ferric chloride induced active hydrogenase synthesis. Incorporation of both metals into the enzyme required protein synthesis as evident from studies inhibiting translation by chloramphenicol. Iron is bound to acid-labile sulfur in the hydrogenases. Since nickel incorporation was identical to that of iron, linkage of nickel to the soluble hydrogenase may be similar to that of iron. Studies inhibiting transcription suggested an unusual long half life of the hydrogenase mRNA of 1.5h.

Key words

Alcaligenes eutrophus Nickel in hydrogenase Nickel-free hydrogenase Immunochemistry of hydrogenase proteins mRNA half life 



crossed immunoelectrophoresis


rocket immunoelectrophoresis


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albracht SPJ, Graf EG, Thauer RK (1982) The EPR properties of nickel in hydrogenase from Methanobacterium thermoautotrophicum. FEBS Lett 140:311–313Google Scholar
  2. Brill WJ, Steiner AL, Shah VK (1974) Effect of molybdenum starvation and tungsten on the synthesis of nitrogenase components in Klebsiella pneumoniae. J Bacteriol 118:986–989Google Scholar
  3. Dixon R, Eady RR, Espin G, Hill S, Iaccarino M, Kahn D, Merrick M (1980) Analysis of regulation of Klebsiella pneumoniae nitrogen fixation (nif gene) clusters with gene fusions. Nature 286:128–132Google Scholar
  4. Friedrich CG, Friedrich B (1983) Regulation of hydrogenase formation is temperature sensitive and plasmid coded in Alcaligenes eutrophus. J Bacteriol 153:176–181Google Scholar
  5. Friedrich B, Heine E, Finck A, Friedrich CG (1981) Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus. J Bacteriol 145:1144–1149Google Scholar
  6. Friedrich CG, Schneider K, Friedrich B (1982) Nickel in the catalytically active hydrogenase of Alcaligenes eutrophus. J Bacteriol 152:42–48Google Scholar
  7. Hennecke H, Shanmugam KT (1979) Temperature control of nitrogen fixation in Klebsiella pneumoniae. Arch Microbiol 123:259–265Google Scholar
  8. Kawahara K, Tanford C (1966) The number of polypeptide chains in rabbit muscle aldolase. Biochemistry 5:1578–1591Google Scholar
  9. Ketchum PA, Sevilla CL (1973) In vitro formation of nitrate reductase using extracts of the nitrate reductase mutant of Neurospora crassa, nif-1, and Rhodospirillum rubrum. J Bacteriol 116:600–609Google Scholar
  10. Kojima N, Fox IA, Hausinger RP, Daniels L, Orme-Johnson WH, Walsh C (1983) Paramagnetic centers in the nickel-containing deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci, USA 80:378–382Google Scholar
  11. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685Google Scholar
  12. LeGall J, Ljungdahl PO, Moura I, Peck HD Jr, Xavier AV, Moura JJG, Teixera M, Huynh BH, DerVartanian DV (1982) The presence of redox-sensitive nickel in the periplasmic hydrogenase from Desulfovibrio gigas. Biochem Biophys Res Commun 106:610–616Google Scholar
  13. Nagatani HH, Brill WJ (1974) Nitrogenase V. The effect of Mo, W and V on the synthesis of nitrogenase components in Azotobacter vinelandii. Biochim Biophys Acta 362:160–166Google Scholar
  14. Nokhal TH, Schlegel HG (1980) The regulation of hydrogenase formation as a differentiating character of strains of Paracoccus denitrificans. Antnie van Leeuwenhoek J Microbiol Serol 46:143–155Google Scholar
  15. Partridge CDP, Yates MG (1982) Effect of chelating agents on hydrogenase in Azotobacter chroococcum. Biochem J 204:339–344Google Scholar
  16. Popov VO, Berezin IV, Zaks AM, Gazaryan IG, Utlein IB, Egorov AM (1983) Hydrogenase from the hydrogen oxidizing bacterium Alcaligenes eutrophus Z1. Catalytic activity quaternary structure relationship. Biochim Biophys Acta 744:298–303Google Scholar
  17. Schlegel HG, Kaltwasser H, Gottschalk G (1961) Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien. Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 38:209–222Google Scholar
  18. Schneider K, Schlegel HG (1976) Purification and properties of soluble hydrogenase from Alcaligenes eutrophus H16. Biochim Biophys Acta 452:66–80Google Scholar
  19. Schneider K, Cammack R, Schlegel HG, Hall DO (1979) The ironsulfur centres of soluble hydrogenase from Alcaligenes eutrophus. Biochim Biophys Acta 578:445–461Google Scholar
  20. Schneider K, Patil DS, Cammack R (1983) ESR properties of membrane-bound hydrogenases from aerobic hydrogen bacteria. Biochim Biophys Acta 748:353–361Google Scholar
  21. Schneider K, Schlegel HG, Jochim K (1984a). Effect of nickel on activity and subunit composition of purified hydrogenase from Nocardia opaca 1b. Eur J Biochem (in press)Google Scholar
  22. Schneider K, Cammack R, Schlegel HG (1984b) Content and localization of FMN, Fe−S clusters and nickel in the NAD-linked hydrogenase of Nocardia opaca 1b. Eur J Biochem (in press)Google Scholar
  23. Shah VK, Brill WJ (1977) Isolation on an iron-molybdenum cofactor from nitrogenase. Proc Natl Acad Sci USA 74:3249–3253Google Scholar
  24. Stegemann H, Francksen H, Macko V (1973) Potatoproteins: genetic and physiological changes evaluated by one- or two dimensional PAA-geltechniques. Z Naturforsch 28c:722–732Google Scholar
  25. Takakuwa S, Wall JD (1981) Enhancement of hydrogenase activity in Rhodopseudomonas capsulata by nickel. FEMS Microbiol Lett 12:359–363Google Scholar
  26. Teo BK, Antonio MR, Tieckelmann RH, Silvis HC, Averill BA (1982) New EXAFS models for the iron sites of the iron molybdenum cofactor of nitrogenase. J Am Chem Soc 104:6126–6129Google Scholar
  27. Weeke B (1973) Quantitative immunoelectrophoresis. Scand J Immunol 2, Suppl 1:37–47Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Cornelius G. Friedrich
    • 1
  • Sergej Suetin
    • 1
  • Michael Lohmeyer
    • 1
  1. 1.Institut für Mikrobiologie der Universität GöttingenGöttingenFederal Republic of Germany

Personalised recommendations