Archives of Microbiology

, Volume 140, Issue 2–3, pp 202–205 | Cite as

Crystallization and preliminary x-ray diffraction data of the cryptomonad biliprotein phycocyanin-645 from a Chroomonas spec.

  • Walter Morisset
  • Werner Wehrmeyer
  • Tilman Schirmer
  • Wolfram Bode
Original Papers

Abstract

The water-soluble antenna chromoprotein phycocyanin-645 from a Chroomonas species (Cryptophyceae) has been crystallized. X-ray precession photographs prove space groups P3121 (or the enantiomorphic P3221) for the trigonal and P212121 for the orthorhombic crystals. Density measurements indicate that the asymmetric units of these crystals contain three or two heterotetrameric units (αάβ2), respectively. The packing of both crystal forms is quite different to that of any other crystals reported so far for phycobiliproteins of blue-green and red algae. The cationic detergent benzalkonium chloride (BAC) is strongly bound in the crystals. Both observations indicate a considerable membrane affinity and a unique association behaviour of the phycobiliproteins from cryptomonads.

Key words

Chroomonas Cryptomonad biliprotein Crystallization Phycocyanin-645 Protein crystallography X-ray diffraction 

Abbreviation

BAC

benzalkonium chloride

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abad-Zapatero C, Fox JL, Hackert ML (1977) The quaternary structure of a unique phycobiliprotein B-phycoerythrin from Porphyridium cruentum. Biochem Biophys Res Comm 78:266–272Google Scholar
  2. Berns DS, Edwards MR (1965) Electron micrographic investigations of C-phycocyanin. Arch Biochem Biophys 110:511–516Google Scholar
  3. Bryant DA, Glazer AN, Eiserling F (1976) Characterization and structural properties of the major biliproteins of Anabaena sp. Arch Microbiol 110:61–75Google Scholar
  4. Cohen-Bazire G, Bryant DA (1982) Phycobilisomes: Composition and structure. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publ, Oxford, pp 143–190Google Scholar
  5. Dobler M, Dover SD, Laves K, Binder A, Zuber H (1972) Crystallization and preliminary crystal data of C.phycocyanin. J Mol Biol 71:785–787Google Scholar
  6. Fisher RG, Woods NE, Fuchs HE, Sweet RM (1980) Three-dimensional structures of C-phycocyanin and B-phycoerythrin at 5 Å resolution. J Biol Chem 255:5082–5089Google Scholar
  7. Gantt E (1979) Phycobiliproteins of cryptophyceae. In: Levandowski M, Hufner SH (eds) Biochemistry and physiology of protozoa. Academic Press, New York, pp 121–137Google Scholar
  8. Gantt E (1980) Structure and function of phycobilisomes: light harvesting pigment complexes in red and blue-green algae. In: Bourne GH, Danielli JF (eds) Int Rev Cytol 66:45–80Google Scholar
  9. Glazer AN (1976) Phycocyanins: Structure and function. In: Smith KC (ed) Photochemical and photobiological reviews New York, pp 71–115Google Scholar
  10. Glazer AN, Apell GS (1977) A common evolutionary origin for the biliproteins of cyanobacteria rhodophyta and cryptophyta. FEMS Lett 1:113–116Google Scholar
  11. Hackert ML, Abad-Zapatero C, Stevens SE, Fox JL (1977) Crystallization of C-phycocyanin from the marine blue-green alga Agmenellum quadruplicatum. J Mol Biol 111:365–369Google Scholar
  12. Hattori A, Fujita Y (1959) Crystalline phycobilin chromoproteids obtained from a blue-green alga, Tolypothrix tenuis. J Biochem (Tokyo) 46:633–644Google Scholar
  13. Holzwarth AR, Wendler J, Wehrmeyer W (1983) Studies on chromophore coupling in isolated phycobiliproteins I. Picosecond fluorescence kinetics of energy transfer in phycocyanin 645 from Chroomonas sp. Biochim Biophys Acta 724:388–395Google Scholar
  14. Kylin H (1910) Über Phykoerythrin u. Phycocyanin bei Ceramium rubrum (Huds.) Ag. Hoppe Seyler's Z Physiol Chem 69:169–239Google Scholar
  15. MacColl R, Habig W, Berns DS (1973) Characterization of phycocyanin from Chroomonas species. J Biol Chem 248:7080–7086Google Scholar
  16. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497Google Scholar
  17. Matthews BW (1971) Determination of molecular weight from protein crystals. J Mol Biol 83:513–526Google Scholar
  18. Mörschel E, Wehrmeyer W (1975) Cryptomonad biliprotein: Phycocyanin-645 from a Chroomonas species. Arch Microbiol 105:153–158Google Scholar
  19. Mörschel E, Koller KP, Wehrmeyer W (1980a) Biliprotein assembly in the disc-shaped phycobilisomes of Rhodella violacea. Electron microscopical and biochemical analyses of C-phycocyanin and allophycocyanin aggregates. Arch Microbiol 125:43–51Google Scholar
  20. Mörschel E, Wehrmeyer W, Koller KP (1980b) Biliprotein assembly in the disc-shaped phycobilisomes of Rhodella violacea. Electron microscopical and biochemical analyses of B-phycoerythrin and B-phycoerythrin-C-phycocyanin aggregates. Eur J Cell Biol 21:319–327Google Scholar
  21. Molisch H (1894) Das Phycoerythrin, seine Krystallisierbarkeit u. chemische Natur Bot Z 52:177–186Google Scholar
  22. Molisch H (1895) Das Phycocyanin, ein krystallisierbarer Eiweiß-körper. Bot Z 53:131–135Google Scholar
  23. Rüdiger W (1980) Plant Biliproteins. In: Czygan FC (ed) Pigments in Plants. G. Fischer, New York Stuttgart, pp 314–351Google Scholar
  24. Schirmer T, Bode W, Sidler W, Zuber H (1983) The crystal structure of C-phycocyanin from Mastigocladus laminosus. In: Workshop on molecular structure and function of light-harvesting pigment-protein complexes and photosynthetic reaction centers. Zürich, p 65Google Scholar
  25. Sidler W, Kumpf B, Frank G, Suter F, Morisset W, Wehrmeyer W, Zuber W (1983) Structural studies on the light harvesting system of Cryptophytan algae: N-terminal amino acid sequences of Chroomonas phycocyanin-645 and Cryptomonas phycoerythrin-545. In: Workshop on molecular structure and function of light-harvesting pigment-protein complexes and photosynthetic reaction centers. Zürich, p 69Google Scholar
  26. Wehrmeyer W (1983) Phycobiliproteins and phycobiliprotein organization in the photosynthetic apparatus of cyanobacteria, red algae and cryptophytes. In: Jensen U, Fairbrothers DE (eds) Proteins and nucleic acids in plant systematics. Springer, Berlin Heidelberg New York, pp 143–167Google Scholar
  27. Westbrook E (1976) Characterization of a hexagonal crystal form of an enzyme of steroid metabolism, Δ5-3-Ketosteroid isomerase: a new method of crystal density measurement. J Mol Biol 103:659–664Google Scholar
  28. Zuber H (1978) Studies on the structure of the light-harvesting pigment-protein-complexes from cyanobacteria and red algae. Ber Dtsch Bot Ges 91:459–475Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Walter Morisset
    • 1
  • Werner Wehrmeyer
    • 1
  • Tilman Schirmer
    • 2
  • Wolfram Bode
    • 2
  1. 1.Fachbereich Biologie-Botanik der Universität MarburgMarburgFederal Republic of Germany
  2. 2.Max-Planck-Institut für BiochemieMartinsriedFederal Republic of Germany

Personalised recommendations