Skip to main content

Advertisement

Log in

Scar formation after skeletal muscle injury

A histological and autoradiographical study in rats

  • Clinical and Experimental Forum
  • Published:
Archives of orthopaedic and traumatic surgery Aims and scope Submit manuscript

Summary

The formation of a connective tissue scar was studied autoradiographically 2–42 days following standard contusion injury in the gastrocnemius muscle of 30 rats. The rats were injected intraperitoneally with 3H-labeled proline 4 h before the muscle samples were taken. On day 2 the majority of cells in the injured area were identified as inflammatory without radioactive labeling. Abundant labeling was observed, however, over the extracellular substance, and moderate labeling with 3H-proline in the cells identified as fibroblasts or their precursors. During the first 2 weeks the number of fibroblasts increased and the majority of them were labeled with silver grains, which were also present over the connective tissue matrix. Six weeks after injury only a few fibroblasts showed labeling, and no labeling was observed extracellularly in the connective tissue. Thus, it seems that the synthesis of extracellular connective tissue components in injured skeletal muscle occurs as early as 2 days after trauma, is intensive between days 5 and 21 after trauma, and decreases markedly during the following 3 weeks.

Zusammenfassung

Die Reaktion des Bindegewebes während Ausbildung einer Narbe wurde autoradiographisch vom 2. bis zum 42. Tag nach Standardkontusion im m.gastrocnemius von 30 Ratten untersucht. 4 Stunden vor Entnahme der Muskelproben wurde den Ratten 3H-markiertes Prolin intraperitoneal appliziert. Am Tag 2 wurde die Mehrzahl der Zellen im verletzten Gebiet als inflammatorische Zellen ohne Radioaktivität identifiziert. Eine reichliche Markierung fand sich jedoch über der Extrazellularsubstanz, und eine gleichförmig schwache Markierung mit 3H-Prolin in den Zellen, die als Fibroblasten oder deren Vorstufen angesprochen wurden. Während der ersten 2 Wochen nahm die Zahl der Fibroblasten zu, die Mehrzahl war mit Silbergranula markiert. Silbergranula fanden sich auch über der Bindegewebsmatritze. 6 Wochen nach der Verletzung waren nur noch wenige Fibroblasten markiert, während das Bindegewebe extracellulär überhaupt nicht mehr markiert war. Offensichtlich beginnt also die Synthese von extrazellulärem bindegewebigem Material im verletzten Skelettmuskel schon 2 Tage nach dem Trauma, ist intensiv zwischen dem 5. und dem 21. Tag nach der Verletzung, und nimmt deutlich ab innerhalb der nächsten 3 Wochen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailey AJ, Robins SP (1976) Current topics in the biosynthesis, structure and function of collagen. Sci Prog Oxf 63:419–444

    Google Scholar 

  2. Bailey AJ, Shellswell GB, Duance VC (1979) Identification and change of collagen types in differenting myoblasts and developing chick muscle. Nature 278:67–69

    Google Scholar 

  3. Bazin S, Delaunay A (1964) Biochimie de inflammation. VI. Fluctuations du taux de collagène et des protéines non fibrillaires dans types differents de foyers inflammatoires. Etudes comparatives. Ann Inst Pasteur 107:163–172

    Google Scholar 

  4. Bennett HS, Wyrick AD, Lee SW, McNeil JH (1976) Science and art in preparing tissues embedded in plastic for light microscopy with special reference to glycol methacrylate, glass knives and simple stains. Stain Technol 51:71–97

    Google Scholar 

  5. Gabbiani G, Le Lous M, Bailey AJ, Bazin S, Delaunay A (1976) Collagen and myofibroblasts of granulation tissue. A chemical, ultrastructural and immunologic study. Virchows Arch B [Cell Pathol] 21:133–145

    Google Scholar 

  6. Gay S, Viljanto J, Raekallio J, Penttinen R (1978) Collagen types in early phases of wound healing in children. Acta Chir Scand 144:205–211

    Google Scholar 

  7. Jozsa L, Reffy A, Demel Z, Szilagyi I (1980) Alterations of oxygen and carbon dioxide tensions in crush-injured calf muscles of rat. Z Exp Chirurg 13:91–94

    Google Scholar 

  8. Järvinen M (1976) Healing of crush injury in rat striated muscle. 3. A microangiographical study of the effect of early mobilization and immobilization on capillary ingrowth. Acta Pathol Microbiol Scand [Sect A] 84:85–94

    Google Scholar 

  9. Järvinen M, Aho AJ, Lehto M, Toivonen H (1983) Age-dependent repair of muscle rupture. A histological and microangiographical study in rats. Acta Orthop Scand 54:64–74

    Google Scholar 

  10. Järvinen M, Sorvari T (1975) Healing of a crush injury in rat striated muscle. 1. Description and testing of a new method of inducing a standard injury to the calf muscles. Acta Pathol Microbiol Scand [Sect A] 83:259–265

    Google Scholar 

  11. Lehto M (1983) Collagen and fibronectin in a healing skeletal muscle injury. An experimental study in rats under variable states of physical activity. Ann Univ Turku Ser D Medica Odontologica 14:1–105

    Google Scholar 

  12. Lehto M, Sims TJ, Bailey AJ (1985) Skeletal muscle injury-molecular changes in the collagen during healing. Res Exp Med 185:95–106

    Google Scholar 

  13. Niinikoski J (1969) Effect of oxygen supply on wound healing and formation of experimental granulation tissue. Acta Physiol Scand Suppl 334:1–72

    Google Scholar 

  14. Niinikoski J (1980) Cellular and nutritional interactions in healing wounds. Review article. Med Biol 58:303–309

    Google Scholar 

  15. Penttinen R, Frey H, Aalto M, Vuorio E, Marttila T (1980) Collagen synthesis in cultured cells. In: Viidik A, Vuust J (eds) Biology of collagen. Academic, London, pp 87–103

    Google Scholar 

  16. Ross R (1975) Connective tissue cells, cell proliferation and synthesis of extracellular matrix—a review. Phil of Trans R Soc London Ser B 271:247–259

    Google Scholar 

  17. Ross R, Benditt EP (1961) Wound healing and collagen formation. I. Sequential changes in components of guinea pik skin wounds observed in the electron microscope. J Biophys Biochem Cytol 11:677–700

    Google Scholar 

  18. Ross R, Benditt EP (1962) Wound healing and collagen formation. III. A quantitative radioautographic study of the utilization of proline-H3 in wounds from normal and scorbutic guinea pigs. J Cell Biol 15:99–108

    Google Scholar 

  19. Silver IA (1980) The physiology of wound healing. In: Hunt TK (ed) Wound healing and wound infection: theory and surgical practice. Appleton-Century-Crofts, New York, pp 11–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehto, M., Järvinen, M. & Nelimarkka, O. Scar formation after skeletal muscle injury. Arch. Orth. Traum. Surg. 104, 366–370 (1986). https://doi.org/10.1007/BF00454432

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00454432

Keywords

Navigation