Advertisement

International Orthopaedics

, Volume 10, Issue 4, pp 271–275 | Cite as

Bone strength measurements at the proximal tibia

Penetration tests and epiphyseal compressive strength
  • I. Hvid
  • J. Jensen
  • S. Nielsen
Article

Summary

Three penetration tests were obtained from corresponding locations at each condyle of 19 proximal tibiae. The patterns of condylar cancellous bone strength varied little between knees. The medial condyle was the strongest with an average medial to lateral strength ratio of 1.9, and in most knees the medial condyle was strongest centrally while the lateral condyle was strongest posteriorly. The penetration strength at 5 successive 2 mm levels beneath the resected subchondral surface also showed a constant pattern of variation. Bone strength decreased significantly at first except at the posterolateral site, then tended to level off. The reduction of strength was most pronounced in the centre of the condyles.

The penetration tests were good predictors of the static compressive strength of the proximal tibia. Correlation coefficients of approximately 0.90 were obtained indicating statistically highly significant correlations (p≤0.00001). The tests were carried out with equipment developed for in vivo measurements of cancellous bone strength during total knee replacement. The findings confirm the close relationship of these investigations to conventional compression tests.

Key words

Tibia Proximal Bone strength 

Résumé

Trois épreuves de pénétration ont été réalisées sur des régions correspondantes au niveau de chaque condyle de 19 extrémités supérieures du tibia. La résistance de l'os spongieux condylien varie peu d'un genou à l'autre: le condyle interne est le plus résistant, le rapport moyen entre résistance du condyle interne et du condyle externe étant de 1.9. Dans la plupart des genoux, le condyle interne est plus résistant au centre, alors que le condyle externe est plus résistant en arrière. La force de pénétration à 5 niveaux consécutifs, tous les 2 mm, au dessous d'une surface de résection subchondrale varie également de façon assez constante: la résistance osseuse diminue d'abord significativement, sauf dans la région postero-externe, et tend ensuite à demeurer constante. La diminution de la résistance est plus importante au centre des condyles.

Les tests de pénétration sont de bons indicateurs de la résistance à la compression statique de l'extrémité supérieure du tibia. Les coefficients de corrélation étaient approximativement de 0.90, indiquant une corrélation statistique hautement significative (p≤0.00001).

Les tests de pénétration ont été réalisés avec le matériel utilisé pour la mesure de la résistance de l'os spongieux au cours des arthroplasties totales du genou; ces résultats confirment la relation étroite entre ces expériences et les tests conventionnels de compression.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armitage P (1971) Statistical methods in medical research. Blackwell Scientific Publications, LondonGoogle Scholar
  2. 2.
    Bargren JH, Day WH, Freeman MAR, Swanson SAV (1978) Mechanical tests on the tibial components of nonhinged knee prosthesis. J Bone Joint Surg 60-B: 256–261Google Scholar
  3. 3.
    Behrens JC, Walker PS, Shoji H (1974) Variations in strength and structure of cancellous bone at the knee. J Biomech 7: 201–207Google Scholar
  4. 4.
    Cameron HU, McNeice GM (1981) Mechanical failure modes in total knee replacement. Arch Orthop Traumat Surg 98: 135–138Google Scholar
  5. 5.
    Colley J, Cameron HU, Freeman MAR, Swanson SAV (1978) Loosening of the femoral component in surface replacement of the knee. Arch Orthop Traumat Surg 92: 31–34Google Scholar
  6. 6.
    Fukubayashi T, Kurosawa H (1980) The contact area and pressure distribution pattern of the knee. Acta Orthop Scand 51: 871–879Google Scholar
  7. 7.
    Goldstein SA, Wilson DL, Sonstegard DA, Matthews LS (1983) The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J Biomech 16: 965–969Google Scholar
  8. 8.
    Hvid I, Andersen K, Olesen S (1984) Cancellous bone strength measurements with the osteopenetrometer mk II. Eng Med 13: 73–78Google Scholar
  9. 9.
    Hvid I, Christensen P, Søndergaard J, Christensen PB, Larsen CG (1983) Compressive strength of tibial cancellous bone. Acta Orthop Scand 54: 819–825Google Scholar
  10. 10.
    Hvid I, Jensen J (1984) Cancellous bone strength at the proximal human tibia. Eng Med 13: 21–25Google Scholar
  11. 11.
    Insall JN, Ranawat CS, Aglietti P, Shine J (1976) A comparison of four models of total knee replacement prosthesis. J Bone Joint Surg 58-A: 754–765Google Scholar
  12. 12.
    Johnson F, Leitl S, Waugh W (1980) The distribution of load across the knee. A comparison of static and dynamic measurements. J Bone Joint Surg 62-B: 346–349Google Scholar
  13. 13.
    Kolstad K, Wigren A, Oberg K (1982) Gait analysis with an angle diagram technique. Acta Orthop Scand 53: 733–743Google Scholar
  14. 14.
    Lereim P, Goldie I, Dahlberg E (1974) Hardness of the subchondral bone of the tibial condyles in the normal state and in osteoarthritis and rheumatoid arthritis. Acta Orthop Scand 45: 614–627Google Scholar
  15. 15.
    Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3: 51–61Google Scholar
  16. 16.
    Sneppen O, Christensen P, Larsen H, Vang P-S (1981) Mechanical testing of trabecular bone in knee replacement. Int Orthop 5: 251–256Google Scholar
  17. 17.
    Walker PS, Hajek JV (1972) The load-bearing area in the knee joint. J Biomech 5: 581–589Google Scholar
  18. 18.
    Wolff, J (1892) Das Gesetz der Transformation der Knochen. Hirschwald BerlinGoogle Scholar
  19. 19.
    Yuzuki O (1977) Study on the mechanical strength and the inner structure of the knee. J Jpn Orthop Assoc 52: 537–549Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • I. Hvid
    • 1
  • J. Jensen
    • 1
  • S. Nielsen
    • 1
  1. 1.Biomechanics LaboratoryOrthopaedic HospitalArhus NDenmark

Personalised recommendations