Skip to main content
Log in

Age-dependent changes of the compound action potential in the guinea pig

Altersbedingte Veränderungen des Summenaktionspotentials beim Meerschweinchen

  • Published:
Archives of oto-rhino-laryngology Aims and scope Submit manuscript

Zusammenfassung

Zur Erfassung altersbedingter Veränderungen des am weitesten peripher gelegenen neuralen Anteils der Hörbahn wurde das Summenaktionspotential des Hörnerven beim Meerschweinchen untersucht. Neben einem ausgeprägten Schwellenverlust, fand sich eine signifikant geringere Amplitude bei alten Versuchstieren. Die Latenz des Summenaktionspotentials dagegen zeigte sich unverändert. Dies deutet unter Berücksichtigung der sich bei jungen und alten Meerschweinchen entsprechenden Amplitudenzunahme im untersuchten Intensitätsbereich darauf hin, daß die noch erregten Neurone des N. acusticus keine Einbußen ihrer Funktionsfähigkeit im Alter erfahren.

Summary

As a measure of age-related changes in the most peripheral neural part of the auditory pathway, the compound action potential of the guinea pig was analyzed. In addition to a marked threshold elevation, there was a significantly lower potential amplitude in old animals. By contrast, the latency of the compound action potential was unchanged. In view of the fact that the relative amplitude increase in the intensity range tested was the same in old as in young animals, the implication is that the auditory-nerve neurons that are still excited do not exhibit functional deterioration with aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bredberg G (1968) Cellular pattern and nerve supply of the human organ of Corti. Acta Otolaryngol [Suppl] 236: 1–135

    Google Scholar 

  2. Coleman JW (1976) Hair cell loss as a function of age in the normal cochlea of the guinea pig. Acta Otolaryngol 82: 33–40

    Google Scholar 

  3. Covell WP, Rogers JB (1957) Pathologic changes in the inner ears of senile guinea pigs. Laryngoscope 67: 118–129

    Google Scholar 

  4. Crowley DE, Schramm VL, Swain RE, Swanson SN (1972) Analysis of age-related changes in electric responses from the inner ear of rats. Ann Otol Rhinol Laryngol 81: 739–746

    Google Scholar 

  5. Dayal VS, Barek WG (1977) The organ of Corti in ageing guinea pigs. Laryngoscope [Suppl] 1: 13–18

    Google Scholar 

  6. Dum N, Schmidt U, von Wedel H (1980) Age-dependence of the neural auditory thresholds of albino and pigmented guinea pigs. Arch Otorhinolaryngol 229: 191–199

    Google Scholar 

  7. Ehret G (1974) Age-dependent hearing loss in normal hearing mice. Naturwissenschaften 61: 506–507

    Google Scholar 

  8. Fleischer K (1956) Histologische und audiometrische Studie über den altersbedingten Struktur- und Funktionswandel des Innenohres. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 170: 142–167

    Google Scholar 

  9. Gacek RR, Schuknecht HF (1969) Pathology of presbycusis. Int Audiol 8: 199–209

    Google Scholar 

  10. Gieldanowski J (1967) Potencjaly mikrofoniczne jako kryterium starzenia sie komorek zmyslowych narzadu cortiego (Microphonic potentials as a criterion of ageing of the sensory cells of Corti's apparatus). Otolaryngol Pol 21: 3–7

    Google Scholar 

  11. Henry KR, Chole RA (1980) Genotypic differences in behavioral, physiological and anatomical expressions of age-related hearing loss in the laboratory mouse. Audiology 19: 369–383

    Google Scholar 

  12. Henry KR, McGinn MD, Chole RA (1980) Age-related auditory loss in the mongolian gerbil. Arch Otorhinolaryngol 228: 233–238

    Google Scholar 

  13. Hull RH (1981) Central auditory processing in presbycusis. Bull Audiophonol [Suppl] 13: 109–117

    Google Scholar 

  14. Johnsson L-G (1971) Degenerative Veränderungen im alternden Innenohr, mit besonderer Berücksichtigung der vasculären Veränderungen, in Flächenpräparaten der menschlichen Cochlea dargestellt. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 200: 318–330

    Google Scholar 

  15. Johnsson L-G, Hawkins JE (1972) Sensory and neural degeneration with aging, as seen in microdissections of the human inner ear. Ann Otol Rhinol Laryngol 81: 179–193

    Google Scholar 

  16. Jorgensen MB (1961) Changes of aging in the inner ear. Histological studies. Arch Otolaryngol 74: 56–62

    Google Scholar 

  17. Keithley EM, Feldman ML (1979) Spiral ganglion cell counts in age-graded series of rat cochleas. J Comp Neurol 188: 429–441

    Google Scholar 

  18. Mikaelian DO (1979) Development and degeration of hearing in the C57/b16 mouse: Relation of electrophysiologic responses from the round window and cochlear nucleus to cochlear anatomy and behavioral responses. Laryngoscope 89: 1–15

    Google Scholar 

  19. Mikaelian DO, Warfield D, Norris O (1974) Genetic progressive hearing loss in the C57/b16 mouse. Relation of behavioral responses to cochlear anatomy. Acta Otolaryngol 77: 327–334

    Google Scholar 

  20. Miller JD (1970) Audibility curve of the chinchilla. J Acoust Soc Am 48: 513–523

    Google Scholar 

  21. Nomura Y, Kirikae I (1968) Presbyacusis. A histological-histochemical study of the human cochlea. Acta Otolaryngol 66: 17–24

    Google Scholar 

  22. Otte J, Schuknecht HF, Kerr AG (1978) Ganglion cell populations in normal and pathological human cochleae. Implications for cochlear implantation. Laryngoscope 88: 1231–1246

    Google Scholar 

  23. Pestalozza G, Davis H, Eldredge DH, Covell WP, Rogers JB (1957) Decreased bio-electric potentials in the ears of senile guinea pigs. Laryngoscope 67: 1113–1122

    Google Scholar 

  24. Pinheiro M, Jordan V, Luz GA (1973) The relation between permanent threshold shift and the loss of hair cells in monkeys exposed to impulse noise. Acta Otolaryngol [Suppl] 312: 31–42

    Google Scholar 

  25. Rasmussen AT (1940) Studies of the VIIIth cranial nerve in man. Laryngoscope 50: 67–83

    Google Scholar 

  26. Ryan A, Dallos P (1975) Effect of absence of cochlear outer hair cells on behavioral auditory threshold. Nature 253: 44–45

    Google Scholar 

  27. Saxén A (1952) Inner ear in presbyacusis. Acta Otolaryngol 41: 213–227

    Google Scholar 

  28. Schuknecht HF (1955) Presbycusis. Laryngoscope 65: 402–419

    Google Scholar 

  29. Schuknecht HF (1964) Further observations on the pathology of presbycusis. Arch Otolaryngol 80: 369–382

    Google Scholar 

  30. Sercer A, Krmpotic J (1958) Über die Ursache der progressiven Altersschwerhörigkeit. Acta Otolaryngol [Suppl] 143: 1–36

    Google Scholar 

  31. Suga F, Lindsay JR (1976) Histopathological observations of presbycusis. Ann Otol Rhinol Laryngol 85: 169–184

    Google Scholar 

  32. Úlchlová L (1973) Normal cellular pattern of the organ of Corti in the guinea pig. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 204: 321–330

    Google Scholar 

  33. von Wedel H, Opitz HJ (1980) The time resolution in short duration signal changes — Psychoacoustical and electrophysiological studies. Hear Res 2: 387–395

    Google Scholar 

  34. Ylikoski (1974) Correlation between pure tone audiogram and cochlear pathology in guinea-pigs intoxicated with ototoxic antibiotics. Acta Otolaryngol [Suppl] 326: 42–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With the support of the Deutsche Forschungsgemeinschaft (DFG)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dum, N. Age-dependent changes of the compound action potential in the guinea pig. Arch Otorhinolaryngol 238, 179–187 (1983). https://doi.org/10.1007/BF00454311

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00454311

Schlüsselwörter

Key words

Navigation