Archives of oto-rhino-laryngology

, Volume 229, Issue 2, pp 149–153 | Cite as

Endocochlear potential and potassium concentration in endolymph and perilymph of the chinchilla

  • Tetsuo Morizono
  • Leonard P. Rybak
  • Steven Asp


Guinea pigs and chinchillas were studied for EP and potassium concentrations in scala media and scala tympani using potassium-sensitive microelectrodes. Response of EP to 3 min anoxia was strikingly different in these two species. On the other hand, the resting values for EP and potassium concentrations in endolymph and perilymph were not significantly different. These findings suggest that the different response to anoxia in these two species is due to differences in permeability of the cochlear partitions to the ions.

Key words

Cochlea Potassium microelectrode Permeability EP Anoxia Chinchilla 

Endokochleares Potential und Kaliumkonzentration in Endolymphe und Perilymphe beim Chinchilla


Untersuchungen des endokochlearen Potentials (EP) und der Kaliumkonzentration mit kaliumempfindlichen Mikroelektroden in der Scala media und tympani beim Meerschweinchen und Chinchilla. Die Antwort des EP nach 3 min Anoxie war deutlich verschieden bei den beiden Tierarten, während die Restwerte von EP und die Kaliumkonzentration in Endolymphe und Perilymphe nicht signifikant different waren. Die Ergebnisse lassen vermuten, daß die differenten Reaktionen dieser beiden Tierarten durch Unterschiede in der Permeabilität der Schneckenareale bedingt ist.


Kochlea Kaliummikroelektrode Permeabilität EP Anoxie Chinchilla 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bekesy G von (1951) DC potentials and the energy balance of the cochlear partition. J Acoust Soc Am 23: 576–582Google Scholar
  2. Bosher SK, Warren RL (1968) Observations on the electrochemistry of the cochlear endolymph of the rat: a quantitative study of its electrical potential and ionic composition as determined by means of flame spectrophotometry. Proc R Soc Lond 171: 227–247Google Scholar
  3. Bosher SK (1977) The changes produced by anoxia in the endolymphatic cation concentrations of the rat cochlea. J Physiol (Lond) 266: 93PGoogle Scholar
  4. Bosher SK (1979) The nature of the negative endocochlear potentials produced by anoxia and ethacrynic acid in the rat and guinea pig. J Physiol (Lond) 293: 329–345Google Scholar
  5. Citron L, Exley D, Hallpike CS (1956) Formation, circulation, and chemical properties of labyrinthine fluids. Br Med Bull 12: 101–106Google Scholar
  6. Davies DG (1968) Biochemistry of the inner ear fluids — experimental and clinical observations. J Laryngol Otol 82: 301–312Google Scholar
  7. Flock A (1976) Electron probe determination of relative ion distribution in the inner ear. Acta Otolaryngol (Stockh) 83: 239–244Google Scholar
  8. Johnstone BM, Sellick PM (1972) The peripheral auditory apparatus. Q Rev Biophys 5: 1–57Google Scholar
  9. Johnstone CG, Schmidt RS, Johnstone BM (1963) Sodium and potassium in vertebrate cochlear endolymph as determined by flame microspectrophotometry. Comp Biochem Physiol 9: 335–341Google Scholar
  10. Juhn SK, Haugen J, Steven L (1974) Some chemical parameters of serum, cerebrospinal fluid, perilymph, and aqueous humor of the chinchilla. Lab Anim Sci 24: 691–695Google Scholar
  11. Melichar I, Syka J (1977) Time course of anoxia-induced K+ concentration changes in the cochlea measured with K+ specific microelectrodes. Pflügers Arch 372: 207–213Google Scholar
  12. Melichar I, Syka J (1978) The effects of ethacrynic acid upon the potassium concentration in guinea pig cochlear fluids. Hearing Res 1: 35–41Google Scholar
  13. Mendelsohn M, Konishi T (1969) The effect of local anoxia on the cation content of endolymph. Ann Otol 78: 65–75Google Scholar
  14. Morizono T, Matsumoto I, Sellick PM, Johnstone BM (1974) Measurement of potassium ion concentration in the inner ear fluid with liquid ion-exchange microelectrode. Otol Fukuoka 20: 128–132Google Scholar
  15. Nakashima T, Sullivan MJ, Snow JB Jr, Suga F (1970) Sodium and potassium changes in inner ear fluids. An in vivo study with glass microelectrodes. Arch Otolaryngol 92: 1–6Google Scholar
  16. Nakashima T, Leonard JE, Snow JB Jr, Suga F (1973) Effect of anoxia on the cations and direct current potential in the endolymph. Arch Otolaryngol 97: 452–456Google Scholar
  17. Rodgers K, Chou JTY (1966) Concentrations of inorganic ions in guinea pig inner ear fluids. J Laryngol Otol 80: 778–780Google Scholar
  18. Ryan AF, Wickham MG, Bone RC (1980) Studies of ion distribution in the inner ear: scanning electron microscopy and X-ray microanalysis of freeze-dried cochlear specimens. Hearing Res 2: 1–20Google Scholar
  19. Salt AN, Konishi T (1979) Effects of noise on cochlear potentials and endolymph potassium concentration recorded with potassium-selective electrodes. Hearing Res 1: 343–363Google Scholar
  20. Schnieder EA (1974) A contribution to the physiology of the perilymph. I. Origins of perilymph. Ann Otol 83: 76–83Google Scholar
  21. Silverstein H (1966) Biochemical studies of the inner ear fluids in the cat. Ann Otol 75: 48–63Google Scholar
  22. Silverstein H (1970) Comparison of the inner ear fluids in the antemortem and postmortem state of the cat. Ann Otol 79: 178–187Google Scholar
  23. Smith CA, Lowry OH, Wu ML (1954) The electrolytes of the labyrinthine fluids. Laryngoscope 64: 141–153Google Scholar
  24. Suga F, Nakashima T, Snow JB Jr (1970) Sodium and potassium ions in endolymph. In vivo measurements with glass microeletrodes. Arch Otolaryngol 91: 37–43Google Scholar
  25. Vosteen K-H (1976) Die Produktion von Endo- und Perilymphe und die Durchlässigkeit der Innenohrmembranen. Arch Otorhinolaryngol 212: 219–229Google Scholar
  26. Wada J, Kambayashi J, Marcus DC, Thalmann R (1979) Vascular perfusion of the cochlea: effect of potassium-free and rubidium-substituted media. Arch Otorhinolaryngol 225: 79–81Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Tetsuo Morizono
    • 1
  • Leonard P. Rybak
    • 1
  • Steven Asp
    • 1
  1. 1.Otophysiology Laboratoy, Department of Otolaryngology, Medical School, Medical Research EastUniversity of MinnesotaMinneapolisUSA

Personalised recommendations