Skip to main content
Log in

Electroanatomy of the lateral wall of the cochlea

  • Published:
Archives of oto-rhino-laryngology Aims and scope Submit manuscript

Summary

Metabolically, the most active membrane in the stria vascularis is the marginal cell membrane adjacent to the intermediate cells. It is probably at this site that K+ ions are actively transported in and Cl ions are actively transported out by the Na+⇄K+, K+⇄H+, and Cl ion pumps. Support for this hypothesis was derived from the work of other authors, from our own earlier results and the ex-perimental results presented in this paper. Our experiments indicate that the marginal cells of the stria vascularis facing the endolymphatic space have a positive intracellular potential similar to the potential of the scala media. Therefore, the major portion of the active ion transport takes place on the intermediate cell side of the marginal cells. The pumping mechanisms, localized in this membrane, are responsible for the generation of the positive endocochlear potential (EP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bekesy, G. v: DC resting potentials inside the cochlear partition. J. acoust. Soc. Amer. 24, 72–76 (1952)

    Google Scholar 

  • Bosher, S. R., Warren, R. L.: Observations on the electrochemistry of the cochlear endolymph of the rat. Proc. roy. Soc. B 171, 227–247 (1968)

    Google Scholar 

  • Brusilow, S. W., Gordes, E.: The mutual independence of the endolymphatic potential and the concentrations of sodium and potassium in endolymph. J. clin. Invest. 52, 2517–2521 (1973)

    Google Scholar 

  • Casteels, R.: The physiology of intestinal smooth muscle. Amer. J. dig. Dis. 12, 231–235 (1967)

    Google Scholar 

  • Duvall, Arndt J.: The ultrastructure of the external sulcus in the guinea pig cochlear duct. Laryngoscope (St. Louis) 79, 1–29 (1969)

    Google Scholar 

  • Fiandt, H. v., Saxém, A.: Beiträge zur Histologie der Stria vascularis und der Prominentia spiralis bei Säugern (Hund und Mensch). Z. Anat. Entwickl.-Gesch. 106, 424–446 (1937)

    Google Scholar 

  • Harrison, F. A., Keynes, R. D., Zürich, L.: The active transport of chloride across the rumen epithelium of the sheep. J. Physiol. (Lond.) 194, 48P-49P (1968)

    Google Scholar 

  • Harvey, W. R., Nedergaard, S.: Sodium-independent active transport of potassium in the isolated midgut of the Cecropia silkworm. Proc. nat. Acad. Sci. (Wash.) 51, 757–765 (1964)

    Google Scholar 

  • Iinuma, Toshitaka: Evaluation of adenosine triphosphatase activity in the stria vascularis and spiral ligament of normal guinea pigs. Laryngoscope (St. Louis) 77, 141–158 (1967)

    Google Scholar 

  • Johnstone, C. G., Schmidt, R. S., Johnstone, B. M.: Sodium and potassium in verebrate cochlear endolymph as determined by flame microspectrophotoetry. Comp. Biochem. Physiol. 9, 335–341 (1963)

    Google Scholar 

  • Johnstone, B. M.: The relation between endolymph and the endocochlear potential during anoxia. Acta oto-laryng. (Stockh.) 60, 113–120 (1965)

    Google Scholar 

  • Keynes, R. D.: Chloride in the squid giant axon. J. Physiol. (Lond.) 169, 690–705 (1963)

    Google Scholar 

  • Kitahara, S.: Active transport of Na+ and Cl by in vitro nonsecreting cat gastric mucosa. Amer. J. Physiol. 213, 819–923 (1967)

    Google Scholar 

  • Konishi, T., Kelsey, E., Singleton, G. T.: Effects of chemical alterations in the endolymph on the cochlear potentials. Acta oto-laryng. (Stockh.) 62, 393–404 (1966)

    Google Scholar 

  • Konishi, T., Kelsey, E., Singleton, G. T.: Negative potential in scala media during early stage of anoxia. Acta oto-laryng. (Stockh.) 64, 107–118 (1967)

    Google Scholar 

  • Konishi, T., Mendelsohn, M.: Effect of ouabain on cochlear potentials and endolymp composition in guinea pigs. Acta oto-laryng. (Stockh.) 69, 192–199 (1970)

    Google Scholar 

  • Kuijpers, W., Bonting, S. L.: Studies on (Na+-K+)-activated ATPase. Localization and properties of ATPase in the inner ear of the guinea pig. Biochim. biophys. Acta (Amst.) 173, 477–485 (1969)

    Google Scholar 

  • Matchinsky, F. M., Thalmann, R.: Quantitative histochemistry of microscopic structures of the cochlea II. Ischemic alterations of levels of glycolytic interediates and cofactors in the organ of Corti and stria vascularis. Ann. Otol. (St. Louis) 76, 638–646 (1967)

    Google Scholar 

  • Masuda, Y., Sando, L, Hemenway, W. G.: Perilymphatic communication routes in guinea pig cochlea. Acta oto-laryng. (Stockh.) 94, 240–245 (1971)

    Google Scholar 

  • Mendelsohn, M., Konishi, T.: The effect of local anoxia on the cation content of the endolymph. Ann. Otol. (St. Louis) 78, 65–75 (1969)

    Google Scholar 

  • Naftalin, L., Harrison, M. S.: Circulation of labyrinthine fluids. L. Laryng. 72, 118–136 (1958)

    Google Scholar 

  • Nakai, Y., Hilding, D. A.: Electron microscopic studies of adenosine triphosphatase activity in the stria vascularis and spiral ligament. Acta oto-laryng. (Stockh.) 62, 411–428 (1966)

    Google Scholar 

  • Prazma, J.: Active ion transport from the scala vestibuli into the scala media. Acta oto-laryng. (Stockh.) 67, 631–638 (1969a)

    Google Scholar 

  • Prazma, J.: Passive ion transport through the Reissner membrane. Acta oto-laryng. (Stockh.) 68, 53–61 (1969b)

    Google Scholar 

  • Sando, L, Masuda, Y., Wood, R., Hemenway, W. G.: Perilymphatic communication routes in guinea pig cochlea. Ann. Otol. (St. Louis) 80, 826–834 (1971)

    Google Scholar 

  • Smith, C., Davis, H., Deatherage, B., Gessert, C.: DC potentials of the membranous labyrinth. Amer. J. Physiol. 193, 203–206 (1958)

    Google Scholar 

  • Smith, C., Lowry, O., Wu. M.: The electrolytes of the labyrinthine fluids. Laryngoscope (St. Louis) 64, 141–153 (1954)

    Google Scholar 

  • Solomon, A. K.: K+ uptake by mitochondria. IOPAB Réunion Internationale de Biophysique, Paris, (A), (1964)

    Google Scholar 

  • Stevens, C. E.: Transport of sodium and chloride by the isolated rumen epithelium. Amer. J. Physiol. 206, 1099–1105 (1964)

    Google Scholar 

  • Tanaka, Y., Brown, P. G.: Action of metabolic inhibitors and energy-rich phosphate compounds on cochlear potentials. Ann. Otol. (St. Louis) 79, 338–351 (1970)

    Google Scholar 

  • Tasaki, I., Davis, H., Eldredge, D. H.: Exploration of cochlear potentials in guinea pigs with a microelectrode. J. acoust. Soc. Amer. 26, 765 (1954)

    Google Scholar 

  • Tasaki, I., Fernandez, C.: Modification of cochlear microphonics and action potentials by KCl solution and by direct currents. J. Neurophysiol. 15, 497–512 (1952)

    Google Scholar 

  • Tasaki, I., Spyropoulos, C. S.: Stria vascularis as source of endocochlear potential. J. Neurophysiol. 22, 149–155 (1959)

    Google Scholar 

  • Vosteen, K. H.: Passive and active transport in the inner ear. Arch. klin. exp. Ohr.-, Nas.-u. Kehlk.-Heilk. 195, 226–245 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author expresses his gratitude for the excellent technical assistance of John B. Pecorak. This investigation was supported by the National Institutes of Health Program project grant No. 50R01-NS09987-02. Appreciation is also ex-tended to Dr. D. A. Hilding for stimulating discussion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prazma, J. Electroanatomy of the lateral wall of the cochlea. Arch Otorhinolaryngol 209, 1–13 (1975). https://doi.org/10.1007/BF00454023

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00454023

Keywords

Navigation