Advertisement

Archives of oto-rhino-laryngology

, Volume 238, Issue 1, pp 87–96 | Cite as

Absorption of various drugs through the rabbit's respiratory mucosa in vitro

  • Yasuo Sakakura
  • Yuichi Majima
  • Hiroshi Mitsui
  • Masashi Inagaki
  • Yasuro Miyoshi
Article

Summary

The absorption of doxycycline (DOTC), bekanamycin (AKM), cefazolin (CEZ), penicillin G (PC-G), predonisolone, and human IgG through the rabbit's tracheal mucosa was examined using the double-chamber method. The results indicate that the tracheal mucosa can absorb both small molecules and macromolecules. Passing through the intercellular space, DOTC, a small molecule, was absorbed through the tracheal epithelium by diffusion. Human IgG, a macromolecule, was absorbed by the mechanism of an energy-consuming transport process. This study of the absorption of drugs through the respiratory mucosa could open up new areas in the utilization of intrarespiratory administration of drugs and lead to a better understanding of the mechanisms involved in respiratory allergies.

Key words

Trachea Mucosal absorption Antibiotics Human IgG Absorption pathway 

Die Aufnahme verschiedener Arzneien durch die Respirationsschleimhaut des Kaninchens in vitro

Zusammenfassung

Die Aufnahme von DOTC, AKM, CEZ, PC-G, Predonisolon und menschlichem IgG durch die Trachealmucosa des Kaninchens wurde mit der Doppelkammermethode geprüft. Als Resultat zeigte sich, daß die Trachealmucosa sowohl kleine Moleküle als auch Makromoleküle resorbieren konnte. Durch die Interzeüularspalten wurde DOTC, ein kleines Molekül von dem Trachealepithelium durch Diffusion resorbiert. Das menschliche IgG, ein Makromolekül, wurde durch den Mechanismus des Energie verbrauchenden Transportprozesses resorbiert. Die vorliegende Studie läßt neue Wege für die Verwendung einer intrarespiratorischen Verabreichung von Arzneien erkennen und kann wichtigen Erkenntnissen über den Mechanismus der respiratorischen Allergie führen.

Schlüsselwörter

Trachea Schleimhautabsorption Antibiotika menschliches IgG Absorptionsmodus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson KE, Arner B (1972) Effect of DDAVP, a synthetic analogue of vasopressin, in patients with cranial diabetes insipidus. Acta Med Scand 192: 21–27Google Scholar
  2. Aronson AS, Andersson KE, Bergstrand CG (1973) Treatment of diabetes insipidus in children with DDAVP, a synthetic analogue of vasopressin. Acta Pediatr Scand 62: 133–140Google Scholar
  3. Bockman DE, Winborn WB (1966) Light and electron microscopy of intestinal ferritin absorptions in sensitized and non-sensitized hamster (mesocricetus auratus). Anat Rec 155: 603–621Google Scholar
  4. Cornell R, Walker WA, Isselbacher KJ (1971) Small intestinal absorption of horseradish perioxidase: A cytochemical study. Lab Invest 25: 42–48Google Scholar
  5. Davis BJ (1964) Disk electrophoresis. II. Method and application to human serum proteins. Ann NY Acad Sci 121: 404–427Google Scholar
  6. Hewitt WL, Finegold SM (1958) Laboratory studies with Kanamycin. Ann NY Acad Sci 76: 122–128Google Scholar
  7. Ishikawa T, Shimada T, Kessoku N, Kiyoi M (1979) Inhibition of rat mast cell degranulation and histamine release by histamine-rat gammaglobulin conjugate. Int Arch Allergy Appl Immunol 59: 403–407Google Scholar
  8. Liss RH, Norman JC (1975) Visualization of doxycycline in lung tissue and sinus secretions by fluorescent techniques. Chemotherapy [Suppl 1] 21: 27–35Google Scholar
  9. Okuda M, Unno H (1968) Distribution of antibiotic, Hostacyclin, in the sinus mucous membrane with chronic sinusitis. Otologia (Tokyo) 40: 151–153Google Scholar
  10. Richardson J, Bouchard T, Ferguson CC (1976) Uptake and transport of exogenous proteins by respiratory epithelium. Lab Invest 35: 307–314Google Scholar
  11. Sakakura Y, Ohi M, Mitsui H, Miyoshi Y (1978) Uptake of antibiotics by nasal mucosa. Pract Otol Kyoto 71: 467–472Google Scholar
  12. Tolo K, Brandtzaeg P, Jonsen H (1977) Mucosal penetration of antigen in the presence or absence of serum-derived antibody. An in vitro study of rabbit oral and intestinal mucosa. Immunology 33: 733–743Google Scholar
  13. Watanabe K, Ōnishi A, Seto Y, Kurimoto Y, Yogo M, Ishikawa T (1979) Inhibitory effect of histamine-carried rat gammaglobulin on histamine release from rat mast cells. Allergy 28: 666–673Google Scholar
  14. Yamagami S, Sugiyama S, Akai M (1969) Effect of oral amino-deoxykanamycin in dysentery and dysentery-like disease. Chemotherapy 17: 1719–1726Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • Yasuo Sakakura
    • 1
  • Yuichi Majima
    • 1
  • Hiroshi Mitsui
    • 1
  • Masashi Inagaki
    • 1
  • Yasuro Miyoshi
    • 1
  1. 1.Department of OtolaryngologyMie University School of MedicineMieJapan

Personalised recommendations