Meccanica

, Volume 27, Issue 1, pp 47–53 | Cite as

Reflection and refraction of rays in pre-stressed solids

  • Giacomo Caviglia
  • Angelo Morro
Article
  • 26 Downloads

Abstract

Rays in viscoelastic, pre-stressed solids are considered. The eikonal equation and the transport equation are derived for both transverse and longitudinal polarizations. The analogue of the standard Snell's law is established. Then the amplitudes of reflected and transmitted rays are determined. The pre-stress is shown to affect the geometry of reflection-refraction processes and the amplitudes of the rays emanating from the interface. Pre-stress effects are also found on traction-free surfaces.

Key words

Reflection Refraction Rays Pre-stress Solids 

Sommario

Si considerano raggi in solidi viscoelastici soggetti ad uno stress iniziale. L'equazione dell'iconale e l'equazione del trasporto sono dedotte sia per polarizzazione trasversale, sia per polarizzazione longitudinale. Stabilita la forma appropriata della legge di Snell, si determinano le ampiezze dei raggi riflessi e trasmessi. Si mostra che lo stress iniziale interviene sia negli angoli sia nelle ampiezze dei raggi reflessi e trasmessi. Effetti dello stress iniziale si presentano persino nel caso di riflessione sulla superficie libera di un semispazio.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AchenbachJ. D., GautesenA. K. and McMakenH., Ray Methods for Waves in Elastic Solids, Pitman, Boston, 1982.Google Scholar
  2. 2.
    KaralF. C. and KellerJ. B., ‘Elastic wave propagation in homogeneous and inhomogeneous media’, J. Acoust. Soc. Am., 31 (1959) 694–705.Google Scholar
  3. 3.
    Caviglia, G. and Morro, A., ‘Ray analysis of wave propagation in non-homogeneous viscoelastic fluids’, SIAM J. Appl. Math. (to appear).Google Scholar
  4. 4.
    FabrizioM. and MorroA., ‘Viscoelastic relaxation functions compatible with thermodynamics’, J. Elasticity, 19 (1988) 63–75.Google Scholar
  5. 5.
    MarsdenJ. E. and HughesT. J. R., Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, 1983, Sect. 4.2.Google Scholar
  6. 6.
    IesanD., Prestressed Bodies, Pitman, Harlow, 1989, Sect. 1.4.Google Scholar
  7. 7.
    BleisteinN., Mathematical Methods for Wave Phenomena, Academic, Orlando, 1984, Sect. 8.2.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Giacomo Caviglia
    • 1
  • Angelo Morro
    • 2
  1. 1.Dipartimento di MatematicaUniversità di GenovaGenovaItaly
  2. 2.DIBEUniversità di GenovaGenovaItaly

Personalised recommendations