Archives of Orthopaedic and Trauma Surgery

, Volume 112, Issue 6, pp 275–279 | Cite as

Influence of humate on calcium hydroxyapatite implants

  • W. Schlickewei
  • U. N. Riede
  • J. Yu
  • W. Ziechmann
  • E. H. Kuner
  • B. Seubert
Clinical and experimental forum

Summary

Implanted bovine apatite is highly osteoconductive, since it serves the host tissue as a “guide-line” for the deposition of newly developing bone tissue. It is well tolerated, but it showed no signs of being resorbed during the course of the experiment. Previous impregnation of the bovine hydroxyapatite with a low molecular humate substance obviously encourages its resorption. This is most easily explained by the known ability of humate to induce the activation of leucocytes. The occasional over-resorption of the apatite is dependent (1) upon the preparation of the implant (granulate) and (2) the local concentration of the humate. Future research is being directed towards the production of a satisfactorily usable form of humate and apatite and the investigation of its HIV blocking action on heterologous cancellous bone.

Keywords

Public Health Calcium Apatite Humate Substance Hydroxyapatite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axhausen G (1909) Die histologischen und klinischen Gesetze der freien Osteoplastik aufgrund von Tierversuchen. Arch Klin Chir 88:23–139Google Scholar
  2. 2.
    Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Munky GR (1986) Stimulation of bone resorption and inhibition of bone formation in vitro by human tumor necrosis factors. Nature 319:516–518Google Scholar
  3. 3.
    Canalis E, McCarthy T, Centrella M (1988) Growth factors and the regulation of bone remodelling. J Clin Invest 81:277–281Google Scholar
  4. 4.
    Friedländer GE (1991) Bone allografts. J Bone Joint Surg [Am] 73:1119–1122Google Scholar
  5. 5.
    Hackenbroch MH, Kattenhagen BD, Köhler M, Müller RT, Schlegel KF, Wirth CJ (1990) Richtlinien zum Führen einer Knochenbank. Dtsch Arzteb 187:41–44Google Scholar
  6. 6.
    Katthagen BD (1986) Knochenregeneration mit Knochenersatzmaterialien. Hefte Unfallheilkd 17Google Scholar
  7. 7.
    Kotani S, Fuyita Y, Kitsuge T, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo T (1991) Bone bonding mechanism of β-tricalcium phosphate. J Biomed Mater Res 25:1303–1315Google Scholar
  8. 8.
    Kuner EH, Hendrich V (1984) Die allogene Knochentransplantation. Chirurg 55:704–709Google Scholar
  9. 9.
    Matti H (1932) Über freie Transplantation von Knochenspongiosa. Langenbecks Arch Chir 168:236–258Google Scholar
  10. 10.
    Merz H, Rytik G, Müller WGE, Röder W (1991) Bestimmung einer HIV-Infektion im menschlichen Knochen. Unfallchirurg 94:47–49Google Scholar
  11. 11.
    Osborn JF (1985) Implantatwerkstoff Hydroxylapatitkeramik. Quintessenz, BerlinGoogle Scholar
  12. 12.
    Pochon JP (1990) Knochenersatzplastiken mit Tricalciumphosphat im Kindesalter. Aktuel Probl Chir Orthop. Huber, BernGoogle Scholar
  13. 13.
    Riede UN, Zeck-Kapp G, Freudenberg N, Keller HU, Seubert B (1991) Humate-induced activation of human granulocytes. Virchows Arch [B] 60:27–34Google Scholar
  14. 14.
    Röder W, Müller WEG, Merz H (1991) Ist Ozon zur Sterilisierung HIV-infizierter Knochen geeignet? Unfallchirurg 94:50–51Google Scholar
  15. 15.
    Schenk RK (1965) Zur histologischen Verarbeitung von unentkalktem Knochen. Acta Anat 60:3Google Scholar
  16. 16.
    Schenk RK, Willenegger HR (1977) Zur Histologic der primären Knochenheilung. Hefte Unfallheilkd 80:155–160Google Scholar
  17. 17.
    Schlickewei W, Paul Ch (1991) Experimentelle Untersuchungen zum Knochenersatz mit bovinem Apatit. Hefte Unfallheilkd 216:59–69Google Scholar
  18. 18.
    Schneider J, Riede UN, Seubert B (1991) Humat-induzierte Membranfusionshemmung bei der HIV-Infektion. Verh Dtsch Pathol Ges 75:505Google Scholar
  19. 19.
    Seubert B, Fickert W, Spitaler U (1988) European Patent Office, Pat. Nr. 0313718-AZGoogle Scholar
  20. 20.
    Spector M (1991) Charakterisierung biokeramischer Kalziumphosphatimplantate. Hefte Unfallheilkd 216:11–22Google Scholar
  21. 21.
    Tomford WW, Doppelt SH, Mankin HJ, Friedlaender GE (1983) Bone bank procedures. Clin Orthop Rel Res 174:15–21Google Scholar
  22. 22.
    Zeck-Kapp G, Nauck M, Riede UN, Block L, Freudenberg N, Seubert B (1991) Niedermolekulare Huminstoffe als proinflammatorische Zellsignale. Verh Dtsch Pathol Ges 75:504Google Scholar
  23. 23.
    Ziechmann W (1980) Huminstoffe. Verlag Chemie, WeinheimGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • W. Schlickewei
    • 1
  • U. N. Riede
    • 2
  • J. Yu
    • 2
  • W. Ziechmann
    • 3
  • E. H. Kuner
    • 1
  • B. Seubert
    • 4
  1. 1.Department of Surgery (Traumatology)University HospitalFreiburgGermany
  2. 2.Department of PathologyUniversity HospitalFreiburgGermany
  3. 3.Ground Chemistry Research GroupUniversity of GöttingenGöttingenGermany
  4. 4.Weyl ChemicalsMannheimGermany

Personalised recommendations