Archives of orthopaedic and traumatic surgery

, Volume 107, Issue 5, pp 316–321 | Cite as

Pharmacokinetics of methylmethacrylate monomer during total hip replacement in man

  • K. Wendal
  • H. Scheuermann
  • E. Weitzel
  • J. Rudigier
Clinical and Experimental Forum


The concentration of methylmethacrylate monomer (MMA) in the blood stream after implantation of the components of 15 total hip prostheses using bone cement was determined in the pulmonary artery, the radial artery, and the superior vena cava after cement application, and correlated with the observed drop in blood pressure and the increase in the pulmonary arterial pressure. In all samples MMA was found. The values ranged from 0.02 μg/ml to 59 gg/ml. The mean maximum value after implantation of the stem was measured to be 7.8μg/ml in the pulmonary artery, 4.6 μg/ml in the radial artery, and 1.75 μg/ml in the superior vena cava. After implantation of the cup the values were clearly lower. The simultaneously recorded blood pressure decreased slightly during the first 3 min and then returned to previous values. The pulmonary arterial mean pressure increased from 18 to 20mmHg during the first 10 min. Although in some patients a drop in blood pressure started at the same time as MMA reached maximum values, high concentrations did not result in a greater effect on the circulatory parameters. Statistical analysis by the Spearman test revealed no correlation between MMA concentrations and the decrease in blood pressure or the increase in the pulmonary arterial pressure.


Pulmonary Artery Radial Artery Bone Cement Superior Vena Pulmonary Arterial Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Während der Implantation von fünfzehn Totalendoprothesen mit Knochenzement wurden die Konzentrationen von Methylmethacrylatmonomer (MMA) in der Arteria pulmonalis, der Arteria radialis and der Vena cava superior bestimmt und mit dem beobachteten Blutdruckabfall and dem Anstieg des pulmonalarteriellen Druckes korreliert. In den Proben konnten MMA-Konzentrationen zwischen 0,02 μg/ml and 59 μg/ml nachgewiesen werden. Die mittlere Maximalkonzentration betrug nach Implantation des Schaftes 7,8 μg/ml in der Pulmonal-, 4,6 μg/ml in der Radialarterie und 1,75 μg/ml in der Vena cava superior. Die Konzentrationen nach Implantation der Pfanne waren deutlich geringer. Der gleichzeitig aufgezeichnete Blutdruck fiel geringgradig während der ersten drei Minuten and kehrte dann auf Ausgangswerte zuriick. Der pulmonalarterielle Mitteldruck stieg von 18 auf 20 mm Hg während der ersten zehn Minuten. Obwohl bei einigen Patienten der Blutdruckabfall mit dem Auftreten maximaler MMA-Konzentrationen zusammenfiel, hatten höhere MMA-Konzentrationen keinen größeren Effekt auf die zirkulatorischen Parameter. Bei der statistischen Analyse mit dem Spearman Test bestand keine statistische Korrelation zwischen den MMA-Konzentrationen und dem Abfall des Blutdruckes bzw. dem Anstieg des pulmonalarteriellen Druckes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breed AL (1974) Experimental production of vascular hypotension, and bone marrow and fat embolism with methylmethacrylate cement. Clin Orthop 102:227–244Google Scholar
  2. 2.
    Burke DW, Gates EI, Harris WH (1984) Centrifugation as a method of improving tensile and fatigue properties of acrylic bone cement. J Bone Joint Surg [Am] 1265–1273Google Scholar
  3. 3.
    Charnley J (1970) Acrylic cement in orthopaedic surgery. Churchill Livingstone, EdinburghGoogle Scholar
  4. 4.
    Cohen CA, Smith TC (1971) The intraoperative hazard of acrylic bone cement: report of a case. Anesthesiology 35:547–549Google Scholar
  5. 5.
    Convery FR, Gunn DR, Hughes JD, Martin WE (1975) The relative safety of polymethylacrylate. J Bone Joint Surg [Am] 57:57–64Google Scholar
  6. 6.
    Crout DHG, Corkill JA, James ML, Ling RSM (1979) Methylmethacrylate metabolism in man. Clin Orthop 141:90–95Google Scholar
  7. 7.
    Eggert A, Huland H, Ruhnke J, Seidel H (1974) Der Über-tritt von Methylmethacrylat-Monomer in die Blutbahn des Menschen nach Hüftgelenksersatzoperationen. Chirurg 45:236–242Google Scholar
  8. 8.
    Engesaeter LB, Strand T, Raugstad TS, Husebo S, Langeland N (1984) Effects of a distal venting hole in the femur during total hip replacement. Arch Orthop Trauma Surg 108:328–331Google Scholar
  9. 9.
    Fairman PR, Morrow C, Glauser FL (1984) Methylmethacrylate induces pulmonary hypertension and increases lung vascular permeability in sheep. Am Rev Respir Dis 130:92–95Google Scholar
  10. 10.
    Heinrich H, Kremer P, Winter H, Wörsdorfer O, Ahnefeld FW (1985) Transoesophageale zweidimentionale Echokardiographie bei Hüftendprothesen. Anaesthesist 34:118–123Google Scholar
  11. 11.
    Homsy CA, Tullos HS, Anderson MS, Diferrante NM, King JW (1972) Some physiological aspects of prosthesis stabilization with acrylic polymer. Clin Orthop 83:317–328Google Scholar
  12. 12.
    Kim KC, Ritter MA (1972) Hypotension associated with methylmethacrylate in total hip arthroplasties. Clin Orthop 88:154–160Google Scholar
  13. 13.
    Kallos T, Enis JE, Golland F, Davis J (1974) Intramedullary pressure and pulmonary embolism of femoral medullary contents in dogs during insertion of bone cement and a prosthesis. J Bone Joint Surg [Am] 56:1363–1367Google Scholar
  14. 14.
    Lipecz J, Nemes C, Baumann F, Csernohorszky V (1974) Circulatory complications during alloarthroplastic operations of the hip joint. Anaesthesist 23:382–388Google Scholar
  15. 15.
    McLaughlin RE, Di Fazio CA, Hakala M, Abott B, MacPhail JA, Mack WP, Sweet DE (1973) Blood clearance and acute pulmonary toxicity of methylmethacrylate in dogs after simulated arthroplasty and intravenous injection. J Bone Joint Surg [Am] 55:1621–1628Google Scholar
  16. 16.
    Michelinakis E, Morgan RH, Curtis PJ (1971) Circulatory arrest and bone cement. Br Med J 3:639Google Scholar
  17. 17.
    Mittelmeier H (1985) Fate of joint implants. Dtsch Arztebl 54:1010–1012Google Scholar
  18. 18.
    Modig J, Malmberg P (1975) Pulmonary and circulatory reactions during total hip replacement surgery. Acta Anaesthesiol Scand 19:1–19Google Scholar
  19. 19.
    Modig J, Busch C, Olerud S, Saldeen T, Waernbaum G (1975) Arterial hypotension and hypoxaemia during total hip replacements: the importance of thromboplastic products, fat embolism and acrylic monomers. Acta Anaesthesiol Scand 19:28–43Google Scholar
  20. 20.
    Peebles DJ, Ellis RH, Stride SDK, Simpson BRJ (1972) Cardiovascular effects of methylmethacrylate cement. Br Med J 1:349–351Google Scholar
  21. 21.
    Philipps H, Cole PV, Lettin AW (1971) Cardiovascular effects of implanted bone cement. Br Med J 3:460Google Scholar
  22. 22.
    Powell JN, McGrath PJ, Lahiri SK, Hill P (1970) Cardiac arrest associated with bone cement. Br Med J 3:326Google Scholar
  23. 23.
    Rinecker H (1980) New clinico-pathophysiological studies on the bone cement implantation syndrome. Arch Orthop Trauma Surg 97:263–274Google Scholar
  24. 24.
    Rudigier J, Grünert A (1978) Investigations of pathogenesis of reactions in circulation and respiration during the implantation of bone cements. Arch Orthop Trauma Surg 91:85–95Google Scholar
  25. 25.
    Rudigier J, Ritter G (1983) Pathogenesis of circulatory reactions triggered by nervous reflexes during the implantation of bone cements. Res Exp Med 183:77–94Google Scholar
  26. 26.
    Rutkow IM, Marlboro PH (1986) Orthopedic operations in the united states, 1979 through 1983. J Bone Joint Surg [Am] 68:716–719Google Scholar
  27. 27.
    Svartling N, Pfaffli P, Tarkkanen L (1985) Methylmethacrylate blood levels in patients with femoral neck fracture. Arch Orthop Trauma Surg 104:242–246Google Scholar
  28. 28.
    Tronzo RG, Kallos T, Wyche MQ (1978) Elevation of intramedullary pressure when methylmethacrylate is inserted in total hip arthroplasty. J Bone Joint Surg [Am] 56:714–718Google Scholar
  29. 29.
    von Issendorff WD, Ritter G (1977) Examinations to establish the intensity and significance of the intramedular pressure during the precipitation of the artificial hip joint. Unfallchirurgie 3:99–104Google Scholar
  30. 30.
    Wenda K, von Issendorff WD, Rudig L, Rudigier J (1986) The intramedullary pressure during total hip replacement with bone cement. 10th European Congress on Biomaterials, Bologna, Sept. (Abstract)Google Scholar
  31. 31.
    Wenda K, von Issendorff WD, Rudigier J, Ahlers J (1987) Blood pressure decrease after bone cement — effect of monomer of intramedullary pressure? Proceedings, 13th annual meeting Society for Biomaterials, New York, p 220Google Scholar
  32. 32.
    Whitenack H, Hausberger FX (1971) Intravasation of fat from the bone marrow cavity. Am J Pathol 65 (2):335–345Google Scholar
  33. 33.
    Zichner L (1972) Embolien aus dem Knochenmarkkanal als Ursache von Sofort- und Spatkomplikationen nach Einsetzen von intramedullären Femurkopfendoprothesen mit Polymethylmethacrylat. Helv Chir Acta 39:717–720Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • K. Wendal
    • 1
  • H. Scheuermann
    • 2
  • E. Weitzel
    • 1
  • J. Rudigier
    • 1
  1. 1.Clinic of Traumatic SurgeryUniversity of MainzGermany
  2. 2.Analytic LaboratoriesKulzer CompanyBad HomburgGermany

Personalised recommendations