Advertisement

Archives of orthopaedic and traumatic surgery

, Volume 107, Issue 5, pp 293–300 | Cite as

The healing of biologic and synthetic bone implants

An Experimental Study
  • A. D. Verburg
  • P. J. Klopper
  • A. van den Hooff
  • R. K. Marti
  • P. E. Ochsner
Original Articles

Summary

The aim of the present study was to investigate the osteogenic properties of different types of cancellous bone grafts inserted in large osseous defects in dogs and to compare these with those of sintered hydroxyapatite implants. Fresh cancellous autografts were rapidly revascularized and invariably induced a complete healing of the defect. Frozen and fresh cancellous allografts were largely resorbed, the latter evoking a strong antigenic response in two of the five cases. Sintered hydroxyapatite granules were largely encapsulated in fibrous tissue, neither stimulating nor inhibiting osseous ingrowth. Degradation of the hydroxyapatite implant was not observed.

Keywords

Public Health Hydroxyapatite Bone Graft Cancellous Bone Fibrous Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrektsson T (1980) In vivo studies of bone grafts. Acta Orthop Scand 51:9–17Google Scholar
  2. 2.
    Andersson GBJ, Gaechter A, Galante JO, Rostoker W (1978) Segmental replacement of long bones in baboons using a fiber titanium implant. J Bone Joint Surg [Am] 60:31–40Google Scholar
  3. 3.
    Chalmers J (1967) Symposium on tissue organ transplant. J Clin Pathol [Suppl] 20:540–550Google Scholar
  4. 4.
    Dambe LT, Saur K, Eitel F, Schweiberer L (1981) Morphologie der Einheilung von frischen autologen und homologen Spongiosatransplantaten in Diaphysendefekte. Unfallheilkd 84:115–120Google Scholar
  5. 5.
    Elves MW (1978) Cell-mediated immunity to allografts of fresh and treated bone. Int Orthop 2:171–175Google Scholar
  6. 6.
    Hart MM, Campbell ED, Kartub MG (1986) Bone banking. Clin Orthop 206:295–300Google Scholar
  7. 7.
    Heiple KG, Chase SW, Herndon CH (1963) A comparative study of the healing process following different types of bone transplantation. J Bone Joint Surg [Am] 45:1593–1616Google Scholar
  8. 8.
    Holmes RE, Bucholz RW, Mooney V (1986) Porous hydroxyapatite as a bone-graft substitute in metaphyseal defects. J Bone Joint Surg [Am] 68:904–911Google Scholar
  9. 9.
    Horton JE, Reisz LG, Simmons HA, Oppenheimer JJ, Mergenhagen SE (1972) Bone resorbing activity in supernatant fluid from cultured human peripheral blood leukocytes. Science 177:793–795Google Scholar
  10. 10.
    Jarcho M, Kay JF, Gumaev KI, Doremus RH, Drobeck HP (1977) Tissue cellular and subcellular events at a boneceramic hydroxyapatite interface. J Bioeng 1:79–92Google Scholar
  11. 11.
    Kent JN, Finger IM, Quinn JH, Guerra LR (1986) Hydroxyapatite alveolar ridge reconstruction. J Oral Maxillofac Surg 44:37–49Google Scholar
  12. 12.
    Köster K, Ehard H, Kubicek J, Heide H (1979) Experimentelle Anwendung von Kalziumphosphatgranulat zur Substitution von konventionellen Knochentransplantaten. Z Orthop 118:398–403Google Scholar
  13. 13.
    Linghorne WJ (1960) The sequence of events in osteogenesis as studied in polyethylene tubes. Ann NY Acad Sci 85:445–460Google Scholar
  14. 14.
    Matti H (1932) Über freie Transplantation von Knochenspongiosa. Arch Klin Chir 168:236–258Google Scholar
  15. 15.
    Mowlem R (1944) Cancellous chip bone grafts. Lancet 2:746–748Google Scholar
  16. 16.
    Nilsson OS, Urist MR, Dawson EG, Schmalzried TP, Finerman GAM (1986) Bone repair induced by morphogenetic protein in ulnar defects in dogs. J Bone Joint Surg [Br] 68:635–643Google Scholar
  17. 17.
    Ogino M, Ohuchi F, Hench LL (1980) Compositional dependence of the formation of calcium phosphate films on bioglass. J Biomed Mater Res 14:55–64Google Scholar
  18. 18.
    Rhinelander FW (1974) Tibial blood supply in relation to fracture healing. Clin Orthop Rel Res 105:34–81Google Scholar
  19. 19.
    Rittmann WW, Perren SM (1974) Corticale Knochenheilung nach Osteosynthese und Infektion. Springer, Berlin Heidelberger New York, p 17Google Scholar
  20. 20.
    Schroeder LW, Bowen RL, Ferris JS (1980) Adhesive bonding of various materials to hard tooth tissues. XX. Calcium-to-calcium distances in hydroxyapatite. J Biomed Mater Res 14:83–90Google Scholar
  21. 21.
    Tashjian AH, Voelkel EF, Levine L, Goldhaber P (1972) Evidence that the bone resorption stimulating factor produced by mouse fibrosarcoma cells is prostaglandin Ez. J Exp Med 136:1329–1343Google Scholar
  22. 22.
    Tomford WW, Ploetz JE, Mankin HJ (1986) Bone allografts of femoral heads: procurement and storage. J Bone Joint Surg [Am] 68:534–537Google Scholar
  23. 23.
    Urist MR, Mikulski A, Boyd SD (1975) A chemosterilized antigen-extracted autodigested alloimplant for bone banks. Arch Surg 110:416–428Google Scholar
  24. 24.
    Waris P (1981) Torsional strength of cortical and cancellous bone grafts after rigid plate fixation. Acta Orthop Scand 52:249–255Google Scholar
  25. 25.
    Wilson PD (1951) Experience with the use of refrigerated homogeneous bone. J Bone Joint Surg [Br] 33:301–315Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • A. D. Verburg
    • 1
  • P. J. Klopper
    • 2
  • A. van den Hooff
    • 2
  • R. K. Marti
    • 2
  • P. E. Ochsner
    • 3
  1. 1.Department of Orthopedic SurgeryZiekenhuis SittardSittardThe Netherlands
  2. 2.Academic Medical CenterAmsterdamThe Netherlands
  3. 3.Department of Orthopedic SurgeryKantonspital LiestalSwitzerland

Personalised recommendations