Geriatric Nephrology and Urology

, Volume 2, Issue 1, pp 63–74 | Cite as

Hyponatraemia in the elderly patient

  • L.R. Solomon
  • G. Sangster
  • Michael Lye
Review Article
  • 20 Downloads

Abstract

The elderly are at risk of developing hyponatraemia because of age related changes in renal function and body composition. Factors regulating sodium and water balance in the elderly are reviewed with emphasis on iatrogenic factors. Since rapid reversal of hyponatraemia may cause neurological damage in some patients, the optimum rate of correction is discussed.

Key words:

Hyponatraemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson RJ, Chung HM, Kluge R, Schrier RW. Hyponatraemia: A prospective analysis of its epidemiology and the pathogenetic role of vasopressin. Ann Intern Med 1985; 102: 164–8.Google Scholar
  2. 2.
    Baran D, Hutchinson TA. The outcome of hyponatraemia in a general hospital population. Clin Nephrol 1984; 22: 72–6.Google Scholar
  3. 3.
    Sterns RH. Severe symptomatic hyponatraemia: treatment and outcome. Ann Intern Med 1987; 107: 656–64.Google Scholar
  4. 4.
    Solomon LR, Lye M. Hypernatraemia in the elderly patient. Gerontology 1990; 36: 171–9.Google Scholar
  5. 5.
    Robertson GL. Regulation of vasopressin secretion. In: Seldin DW, Giebisch G, editors. The kidney: physiology and pathophysiology. Vol 2. New York: Raven Press, 1985: 869–84.Google Scholar
  6. 6.
    Fitzsimmons JT. Physiology and pathology of thirst and sodium appetite. In: Seldin DW, Giebisch G, editors. The kidney: physiology and pathophysiology. Vol. 2. New York: Raven Press, 1985: 885–901.Google Scholar
  7. 7.
    Roos JC, Koomans HA, Dorhuit Mees EJ, Delawi IMK. Renal sodium handling in normal humans subjected to low, normal and extremely high sodium supplies. Am J Physiol 1985; 249: F941–7.Google Scholar
  8. 8.
    Navar GL, Carmines PK, Huang W-C, Mitchell KD. The tubular effects of angiotensin II. Kidney Int 1987; 31 (20 Suppl): 81S–88S.Google Scholar
  9. 9.
    Bello-Reuss E, Trivino DL, Gottschalk CW. Effect of sympathetic renal nerve stimulation on proximal sodium and water reabsorption. J Clin Invest 1976; 57; 1104–7.Google Scholar
  10. 10.
    Lye M. The Milieu Interieur and Aging. In: Brocklehurst JC, editor. Textbook of Geriatric Medicine and Gerontology. Edinburgh, London, Melbourne and New York: Churchill Livingstone, 1985: 201–29.Google Scholar
  11. 11.
    Rowe JW, Andres R, Tobin JD, Norris AH, Shock NW. The effect of age on creatinine clearance in man: a cross-sectional and longitudinal study. J Gerontol 1976, 31: 155–63.Google Scholar
  12. 12.
    Crowe MJ, Forsling ML, Rolls BJ, Phillips PA, Ledingham JGG, Smith RF. Altered water excretion in healthy elderly men. Age Ageing 1987; 16: 285–93.Google Scholar
  13. 13.
    Epstein M, Hollenberg NK. Age as a determinant of renal sodium conservation in normal man. J Lab Clin Med 1976; 7: 411–27.Google Scholar
  14. 14.
    Seybold D, Gessler N. Wasser- elektrolyt- and saurebasen-haushalt im alter. Z Gerontol 1981; 14: 370–81.Google Scholar
  15. 15.
    O'Neill PA, Faragher EB, Davies I, Wears R, McLean KA, Fairweather DS. Reduced survival with increasing plasma osmolality in elderly continuing care patients. Age Ageing 1990; 19: 68–71.Google Scholar
  16. 16.
    Helderman JH, Vestel JF, Rowe JW, Tobin JE, Andres R, Robertson, GL. The response of arginine vasopressin to intravenous ethanol and hypertonic saline in man: the impact of aging. J Gerontol 1978; 33: 39–47.Google Scholar
  17. 17.
    Phillips PA, Rolls BJ, Ledingham JGG, Forsling ML, Crowe MJ, Wollner L. Reduced thirst after water deprivation in normal men. N Engl J Med 1984; 311: 753–9.Google Scholar
  18. 18.
    Li CH, Hsieh SM, Nagai I. The response of plasma arginine vasopressin to 14 h water deprivation in healthy men. Acta Endocrinol 1984; 105: 314–7.Google Scholar
  19. 19.
    Vargas E, Lye M, Faragher EB, Goddard C, Moser B, Davies I. Cardiovascular haemodynamics and the response of vasopressin, aldosterone, plasma renin activity and plasma catecholamines to head-up tilt in young and old healthy subjects. Age Ageing 1986; 15: 17–28.Google Scholar
  20. 20.
    Robertson GL, Rowe JW. The effect of aging on neurohypophyseal function. Peptides 1980; 1 Suppl 1: 158–62.Google Scholar
  21. 21.
    Mclean HA, O'Neill PA, Davies I. Are the elderly dehydrated? A study to determine plasma osmolality in a community population. Clin Sci 1989; 77 Suppl 21: 7P.Google Scholar
  22. 22.
    Byatt CM, Millard PM, Levin GE. Diuretics and electrolyte disturbances in 1000 consecutive geriatric admissions. J Roy Soc Med 1990; 83: 704–8.Google Scholar
  23. 23.
    Sunderam SG, Mankikar GD. Hyponatraemia in the elderly. Age Ageing 1983; 12: 77–80.Google Scholar
  24. 24.
    Barker LC, Fairweather DS. Prevalence and causes of hyponatraemia in an elderly hospital population. Age Ageing 1991; 20 Suppl 1: 3.Google Scholar
  25. 25.
    Thomas TH, Morgan DB. Post-surgical hyponatraemia: the role of intravenous fluids and arginine vasopressin. Br J Surg 1979; 66: 540–2.Google Scholar
  26. 26.
    Cochrane JPS, Forsling ML, Cow NM, LeQuesne LP. Arginine vasopressin release following operations. Br J Surg 1981; 68: 209–13.Google Scholar
  27. 27.
    Bouzarth WF, Shenkin HA. Is “Cerebral hyponatraemia” iatrogenic? Lancet 1982; 1: 1061–2.Google Scholar
  28. 28.
    Sunderrajan S, Bauer JH, Vopat RL. Post transurethral prostatic resection hyponatraemic syndrome: case report and review of the literature. Am J Kidney Dis 1984; 4: 80–4.Google Scholar
  29. 29.
    Barlow ED, DeWardener HE. Compulsive water drinking. Q J Med 1959; 28: 235–58.Google Scholar
  30. 30.
    Ferrier IN. Water intoxication in patients with psychiatric illness. Br Med J 1985; 291: 1594–6.Google Scholar
  31. 31.
    Hariprasad MK, Eisinger RP, Nadler IM, Padmanabham CS, Nidus BD. Hyponatraemia in psychogenic polydipsia. Arch Intern Med; 140: 1639–42.Google Scholar
  32. 32.
    Goldman MR, Luchins DJ, Robertson GL. Mechanisms of altered water metabolism in psychotic patients with polydipsia and hyponatraemia. N Engl J Med 1988; 318:397–403.Google Scholar
  33. 33.
    Kennedy RM, Earley LE. Profound hyponatraemia resulting from a thiazide induced decrease in urinary diluting capacity in patient with primary polydipsia. N Engl J Med 1979; 282: 1185–6.Google Scholar
  34. 34.
    Vieweg WVR, David JJ, Rowe WT, Wampler GJ, Burns WJ, Spradlin WW. Death from self-induced water intoxication among patients with schizophrenic syndromes. J Nerv Ment Dis 1985; 173: 161–5.Google Scholar
  35. 35.
    Bartter FC, Schwartz WB. The syndrome of inappropriate secretion of antidiuretic hormone. Am J Med 1967; 42: 790–806.Google Scholar
  36. 36.
    Penney MD, Murphy D, Walters G. Resetting of osmoreceptor response as cause of hyponatraemia in acute idiopathic polyneuritis. Br Med J 1979; 2: 1474–6.Google Scholar
  37. 37.
    Ghose RR. Reset Osmostat after diuretic treatment. Br Med J 1977; 2: 1063.Google Scholar
  38. 38.
    Dreyfuss D, Leveil F, Paillard M, Rahmani J. Acute infectious pneumonia is accompanied by a latent vasopressin-dependent impairment of renal water excretion. Am Rev Respir Dis 1988; 138: 583–9.Google Scholar
  39. 39.
    Ross Hill A, Uribarri J, Mann J, Berl T. Altered water metabolism in tuberculosis: role of vasopressin. Am J Med 1990; 88: 357–64.Google Scholar
  40. 40.
    Winkler AW, Crankshaw OE. Chloride depletion in conditions other than Addison's disease. J Clin Invest 1938; 17: 1–6.Google Scholar
  41. 41.
    Sims EAH, Welt LG, Orloff J, Needham JW. Asymptomatic hyponatraemia in pulmonary tuberculosis. J Clin Invest 1950; 29: 1545–57.Google Scholar
  42. 42.
    Rappart S, West CD, Brodsky WA. Salt losing conditions: the renal defect in tuberculosis meningitis. J Lab Clin Med 1951; 37: 550–61.Google Scholar
  43. 43.
    Harrison HE, Finberg L, Fleishman E. Disturbances of ionic equilibrium of intracellular and extracellular electrolytes in patients with tuberculosis meningitis. J Clin Invest 1951; 31: 300–8.Google Scholar
  44. 44.
    Schwartz WB, Bennett W, Curelop S, Bartter FC. A syndrome of renal sodium loss and hyponatraemia probably resulting from inappropriate secretion of antidiuretic hormone. Am J Med 1957; 23: 529–42.Google Scholar
  45. 45.
    Kennedy PGE, Mitchell DM, Hoffbrand BI. Severe hyponatraemia in hospital inpatients. Br Med J 1978; 2: 1251–3.Google Scholar
  46. 46.
    Thomas TH, Morgan DB, Swaminathan R, Ball SG, Lee MR. Severe hyponatraemia. A study of 17 patients. Lancet 1978; 1: 621–4.Google Scholar
  47. 47.
    Bichet DG, Levi M, Schrier RW. Polyuria, dehydration, overhydration. In: Seldin DW, Giebisch G, editors. The Kidney: physiology and path ophysiology. Vol. 2. New York: Raven Press, 1985: 951–84.Google Scholar
  48. 48.
    Weisman PN, Shenkman L, Gregerman RI. Chlorpropamide hyponatraemia: drug-induced inappropriate antidiuretic-hormone activity. N Engl J Med 1971; 284: 65–71.Google Scholar
  49. 49.
    Robertson GL, Bhoopalam N, Zelzowitz LJ. Vincristine neurotoxicity and abnormal secretion of antidiuretic hormone. Arch Intern Med 1973; 132: 717–20.Google Scholar
  50. 50.
    Smith NJ, Espir ML, Baylis PM. Raised plasma arginine vasopressin concentration in carbamazepineinduced water intoxication. Br Med J 1977; 2: 804.Google Scholar
  51. 51.
    Sordillo P, Sagransky DMI, Mercado R, Michelis MF. Carbamazepine-induced syndrome of inappropriate antidiuretic hormone secretion. Arch Intern Med 1978; 138:299–301.Google Scholar
  52. 52.
    Gold PW, Robertson GL, Ballenger JC, Kaye W, Chen J, Rubinow, et al. Carbamazepine diminishes the sensitivity of the plasma arginine vasopressin response to osmotic stimulation. J Clin Endocrinol Metab 1983; 57: 952–7.Google Scholar
  53. 53.
    Clive DM, Stoff JS. Renal syndromes associated with nonsteroidal anti-inflammatory drugs. N Engl J Med 1984; 310:563–72.Google Scholar
  54. 54.
    Clinch D. Syndrome of inappropriate antidiuretic hormone secretion associated with stress. Lancet 1982; 1: 1131–2.Google Scholar
  55. 55.
    Martinez-Maldonado M. Inappropriate antidiuretic hormone secretion of unknown origin. Kidney Int 1981; 17: 554–67.Google Scholar
  56. 56.
    Verbalis JG. Tumoral hyponatremia. Arch Intern Med 1986;146:1686–7.Google Scholar
  57. 57.
    Osterman J, Calhoun A, Dunham M, Cullum, UX, Clark RM, Stewart, DD et al. Chronic idiopathic syndrome of inappropriate antiduretic hormone secretion and hypertension in a patient with olfactory neuroblastoma. Arch Intern Med 1986; 146: 1731–5.Google Scholar
  58. 58.
    Goldstein CS, Braunstein S, Goldfarb S. Idiopathic syndrome of inappropriate antidiuretic hormone secretion possibly related to advanced age. Ann Intern Med 1983; 99: 185–8.Google Scholar
  59. 59.
    Skowsky WR, Kikuchi TA. The role of vasopressin in the impaired water excretion of myxedema. Am J Med 1978;64:613–21.Google Scholar
  60. 60.
    Emmanouel DS, Lindheimer MD, Katz AI. Mechanism of impaired water excretion in the hypothyroid rat. J Clin Invest 1974; 54: 926–34.Google Scholar
  61. 61.
    Dzau VJ. Renal and circulatory mechanisms in congestive heart failure. Kidney Int 1987; 31: 1402–15.Google Scholar
  62. 62.
    Schrier RW. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis and pregnancy. N Engl J Med 1988; 319: 1127–34.Google Scholar
  63. 63.
    Fichman MP, Vorherr H, Kleeman CR, Telfer N. Diuretic-induced hyponatraemia. Ann Intern Med 1971; 75: 853–63.Google Scholar
  64. 64.
    Ashraf N, Locksley R, Arieff AI. Thiazide-induced hyponatremia associated with death or neurological damage in outpatients. Am J Med 1981; 70: 1163–8.Google Scholar
  65. 65.
    Ashouri OS. Severe diuretic-induced hyponatraemia in the elderly. A series of eight patients. Arch Intern Med 1986;146:1355–7.Google Scholar
  66. 66.
    Kennedy RM, Earley LE. Profound hyponatraemia resulting from a thiazide induced decreased urinary diluting capacity in patient with primary polydipsia. N Eng J Med 1979; 282: 1185–6.Google Scholar
  67. 67.
    Dyckner T, Wester PO. Effects of magnesium infusions in diuretic induced hyponatraemia. Lancet 1981; 1: 585–6.Google Scholar
  68. 68.
    Tarssenen L, Huikko M, Rossi M. Amiloride-induced hyponatremia. Acta Med Scand 1980; 208: 491–4.Google Scholar
  69. 69.
    Bayer AJ, Farag R, Browne S, Pathy MSJ. Plasma electrolytes in elderly patients taking fixed combination diuretics. Postgrad Med J 1986; 62: 159–62.Google Scholar
  70. 70.
    Millar IA, Fraser R, Mason P, Leckie B, Cumming AMM, Robertson JIS. Metabolic effects of high dose amiloride and spironolactone: a comparative study in normal subjects. Br J Clin Pharmacol 1984; 18: 369–75.Google Scholar
  71. 71.
    Barker LC, Fairweather DS. Thirst and dilutional hyponatraemia after a single dose of diuretic in elderly subjects. Clin Sci 1991; 80: 3P.Google Scholar
  72. 72.
    Friedman E, Shadel M, Halkin H, Farfel Z. Thiazide-induced hyponatraemia. Ann Intern Med 1989; 110: 24–30.Google Scholar
  73. 73.
    Levy DW, Lye M. Diuretics and potassium in the elderly. J R Coll Physicians Lond 1987; 21 (2): 148–52.Google Scholar
  74. 74.
    Zalin AM, Hutchinson CE, Jong M, Matthews K. Hyponatraemia during treatment with chlorpropamide and moduretic (amiloride plus hydrochlorothiazide). Br Med J 1984; 289: 659.Google Scholar
  75. 75.
    Barker LC, Fairweather DS. A high incidence of isotonic hyponatraemia in the elderly. Age Ageing 1991: 20 Suppl 1: P8.Google Scholar
  76. 76.
    Katz MA. Hyperglycemia-induced hyponatraemia — calculation of expected serum sodium depression. N Engl J Med 1973; 289: 843–4.Google Scholar
  77. 77.
    Gill GV, Flear CTG. Hyponatraemia. Recent advances in clinical biochemistry. Edinburgh: Churchill Livingstone, 1985: 149–76.Google Scholar
  78. 78.
    Inaba H, Hirasawa H, Mizuguchi T. Serum osmolality gap in postoperative patients in intensive care. Lancet 1987; 1: 1331–5.Google Scholar
  79. 79.
    Maffly RH. The Body Fluids: composition, and physical chemistry. In: Brenner BM, Rector FC, editors. The Kidney, 1976: 95.Google Scholar
  80. 80.
    Worth HGJ. A comparison of the measurement of sodium and potassium by flame photometry and ionselective electrode. Ann Clin Biochem 1985; 22: 343–50.Google Scholar
  81. 81.
    Frier BM, Steer CR, Bairs JD, Bloomfield S. Misleading plasma electrolytes in diabetic children with severe hyperlipidaemia. Arch Dis Child 1980; 55: 771–5.Google Scholar
  82. 82.
    Holliday MA, Kalayci MN, Harrah I. Factors that limit brain volume changes in response to acute and sustained hyper- and hyponatraemia. J Clin Invest 1986; 47:1916–28.Google Scholar
  83. 83.
    Arieff AI, Llach F, Massry SG. Neurological manifestations and morbidity of hyponatraemia: correlation with brain water and electrolytes. Medicine (Baltimore) 1976; 55: 121–9.Google Scholar
  84. 84.
    Rymer MM, Fishman RA. Protective adaptation of brain to water intoxication. Arch Neurol 1973; 28: 49–54.Google Scholar
  85. 85.
    Sterns RH, Thomas DJ, Herndon RM. Brain dehydration and neurologic deterioration after rapid correction of hyponatraemia. Kidney Int 1989; 35: 69–76.Google Scholar
  86. 86.
    Thurston JH. Brain amino-acids decrease in chronic hyponatraemia and rapid correction causes brain dehydration: possible clinical significance. Life Sci 1987; 40:2539–42.Google Scholar
  87. 87.
    Laureno R. Central pontine myelinolysis following rapid correction of hyponatraemia. Ann Neurol 1983; 13: 232–42.Google Scholar
  88. 88.
    Adams RD, Victor M, Mancall EL. Central pontine myelinolysis. Arch Neurol Psychiatr 1959; 81: 154–72.Google Scholar
  89. 89.
    Laureno R, Karp BI. Pontine and extrapontine myelinolysis following rapid correction of hyponatraemia. Lancet 1988; 1: 1439–41.Google Scholar
  90. 90.
    Burcar PJ, Norenberg MD, Yarnell PR. Hyponatraemia and central pontine myelinolysis. Neurology 1977; 27: 223–6.Google Scholar
  91. 91.
    Messert B, Orrison WW, Hawkins MJ, Quaglieri CE. Central pontine myelinolysis. Considerations of etiology, diagnosis, and treatment. Neurology 1979; 29: 147–60.Google Scholar
  92. 92.
    Norenberg MD, Leslie KO, Robertson AS. Association between rise in serum sodium and central pontine myelinolysis. Ann Neurol 1981; 11: 128–35.Google Scholar
  93. 93.
    Sterns RH, Riggs JE, Schochet SS. Osmotic demyelination syndrome following correction of hyponatraemia. N Engl J Med 1986; 314: 1535–42.Google Scholar
  94. 94.
    Daggett P, Deanfield J, Moss F. Neurological aspects of hyponatraemia. Postgrad Med J 1982; 58: 737–40.Google Scholar
  95. 95.
    Dzau VJ, Hollenberg NK. Renal response to captopril in severe heart failure: role of furosemide in natriuresis and reversal of hyponatraemia. Ann Intern Med 1984; 100:777–82.Google Scholar
  96. 96.
    Packer M, Medina N, Yushak M. Correction of dilutional hyponatraemia in severe chronic heart failure by converting enzyme inhibition. Ann Intern Med 1984; 100: 782–9.Google Scholar
  97. 97.
    Hamilton RW, Buckalew VM Jr. Sodium, water and congestive heart failure. Ann Intern Med 100: 902-4.Google Scholar
  98. 98.
    Brown JJ, Davies DL, Lever AF, Robertson IIS. Plasma renin concentration in human hypertension, 1. Relationship between renin, sodium and potassium. Br Med J 1965; 2: 144–8.Google Scholar
  99. 99.
    Packer M, Medina N, Yushak M. Relation between serum sodium concentration and the hemodynamic and clinical responses to converting enzyme inhibition with captopril in severe heart failure. J Am Coll Cardiol 1984; 3: 1035–43.Google Scholar
  100. 100.
    Cleland JGF, Dargie HJ, McAlpine H, Ball SG, Morton JJ, Robertson JIS, et al. Severe hypotension after first dose of enalapril in heart failure. Br Med J 1985; 291: 1309–12.Google Scholar
  101. 101.
    Nicholls MG, Espiner EA, Ikram H, Maslowski AH. Hyponatraemia in congestive heart failure during treatment with captopril. Br Med J 1980; 281: 909.Google Scholar
  102. 102.
    Maslowski AH, Ikram H, Nicholls MG, Espiner EA. Haemodynamic, hormonal and electrolyte responses to captopril in resistant heart failure. Lancet 1981; 1: 71–4.Google Scholar
  103. 103.
    Ayus JC, Olivero JJ, Frommer JP. Rapid correction of severe hyponatraemia with intravenous hypertonic saline solution. Am J Med 1982; 72: 43–8.Google Scholar
  104. 104.
    Worthley LIG, Thomas PD. Treatment of hyponatraemic seizures with intravenous 29.2% saline. Br Med J 1986; 292: 168–9.Google Scholar
  105. 105.
    Arieff AI. Hyponatraemia, convulsions, respiratory arrest and permanent brain damage after elective surgery in healthy women. N Engl J Med 1986; 314: 1529–35.Google Scholar
  106. 106.
    Ayus JC, Krothapalli RK, Arieff AI. Treatment of symptomatic hyponatraemia and its relation to brain damage. N Engl J Med 1987; 317: 1190–5.Google Scholar
  107. 107.
    Swales JD. Dangers in treating hyponatraemia. Br Med J 1987; 294: 261–2.Google Scholar
  108. 108.
    Hantman D, Rossier B, Zohlman R, Schrier R. Rapid correction of hyponatraemia in the syndrome of inappropriate secretion of antidiuretic hormone. An alternative treatment to hypertonic saline. Ann Intern Med 1973; 78: 870–5.Google Scholar
  109. 109.
    Cherril DA, Stote RH, Birge JR, Singer I. Demeclocycline treatment in the syndrome of inappropriate antidiuretic hormone secretion. Ann Intern Med 1975; 83: 654–6.Google Scholar
  110. 110.
    Forrest JN, Cox MJ, Hong C, Bia, Singer I. Superiority of demeclocycline over lithium in the treatment of chronic syndrome of inappropriate antidiuretic hormone. N Engl J Med 1978; 298: 173–7.Google Scholar
  111. 111.
    Forrest JN Jr. Lithium inhibition of CAMP-mediated hormones: a caution. N Engl J Med 1975; 287: 867–9.Google Scholar
  112. 112.
    White MG, Fetner CD. Treatment of the syndrome of inappropriate secretion of antidiuretic hormone with lithium carbonate. N Engl J Med 1975; 282: 390–2.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • L.R. Solomon
    • 2
  • G. Sangster
    • 1
  • Michael Lye
    • 1
  1. 1.University Department of Geriatric Medicinethe University of LiverpoolUK
  2. 2.Department of Renal MedicineRoyal Preston HospitalPrestonUK

Personalised recommendations