Archives of orthopaedic and traumatic surgery

, Volume 104, Issue 4, pp 211–217 | Cite as

Cancellous bone at the knee: A comparison of two methods of strength measurement

Original Articles

Summary

The relation of thin-needle axial penetration tests to axial compression tests on machined specimens was examined utilizing distal femoral and proximal tibial epiphyseal cancellous bone. The penetration strength was closely related to the yield strength (r = 0.87), the ultimate strength (r = 0.86), Young's modulus (r = 0.77), the yield energy absorption (r = 0.81), and the ultimate energy absorption (r = 0.84) derived from the compression tests. Generally, femoral specimens were stronger, stiffer, and tougher than tibial specimens. Higher peak penetration strength values were obtained from the medial than from the lateral condyles. The variation of strength within compression test specimens could be expressed in terms of penetration strength; this variation differed slightly between tibial and femoral specimens, but invariably the bone deepest to the joint surface was the weakest. Accordingly, adjustments were introduced in the regression equations connecting the penetration strength to the material properties derived from the compression tests.

Keywords

Compression Test Cancellous Bone Lateral Condyle Femoral Specimen Tibial Epiphyseal 

Zusammenfassung

Die Beziehung von axialen Penetrationstests, die mit einer dünnen Nadel ausgeführt wurden, zu Druckversuchen an Spongiosablöcken der distalen Femur- und proximalen Tibiaepiphyse wurde untersucht. Die Penetrationsfestigkeit war eng bezogen zu den Werten der Bruchfestigkeit (r = 0.87), der Elastizitätsgrenze (r = 0.86), des Elastizitätsmoduls (r = 0.77), der Bruchenergieabsorption (r = 0.81) und der Energieabsorption an der Elastizitätsgrenze (r = 0.84), die aus den Druckversuchen ermittelt werden konnten. Im allgemeinen waren die femoralen Knochenpräparate stärker, stäifer und zäher als die tibialen. Von den medialen Kondylen konnten höhere Spitzenwerte der Penetrationsfestigkeit erzielt werden als von den lateralen. Die Variation der Druckfestigkeitswerte innerhalb der Knochenblöcke konnte als Penetrationsfestigkeit ausgedrückt werden. Diese Variation zeigte nur geringe Unterschiede zwischen Tibia- und Femurpräparaten, jedoch mit zunehmender Tiefe von der Gelenkoberfläche war die Knochensubstanz ausnahmslos am schwächsten. Demensprechend wurden Korrektionen an die Regressionsgleichungen eingeführt, die die Penetrationsfestigkeit mit den aus den Druckversuchen ermittelten Materialeigenschaften des Knochens verbinden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Askew MJ, Lewis JL (1981) Analysis of model variables and fixation post-length effects on stresses around a prosthesis in the proximal tibia. J Biomech Eng 103:239–245Google Scholar
  2. 2.
    Brown TD, Ferguson AB (1980) Mechanical property distributions in the cancellous bone of the human proximal femur. Acta Orthop Scand 51:429–437Google Scholar
  3. 3.
    Colley J, Cameron HU, Freeman MAR, Swanson SAV (1978) Loosening of the femoral component in surface replacement of the knee. Arch Orthop Traumat Surg 92:31–34Google Scholar
  4. 4.
    Diem K, Lentner C (eds) (1970)Documenta Geigy. Scientific tables, 7th edn. JR Geigy SA, Basel, p 177Google Scholar
  5. 5.
    Fung YC (1969) A first course in continuum mechanics. Prentice-Hall, Englewood CliffsGoogle Scholar
  6. 6.
    Goldstein SA, Wilson DL, Sonstegard DA, Matthews LS (1983) The mechanical properties of human tibial trabecular bone as a function of metaphyseal location. J Biomechanics 12:965–969Google Scholar
  7. 7.
    Hald A (1952) Statistical theory with engineering applications. John Wiley and Sons, New York LondonGoogle Scholar
  8. 8.
    Hvid I, Christensen P, Søndergaard J, Christensen PB, Larsen CG (1983) Compressive strength of tibial cancellous bone. Instron and osteopenetrometer measurements in an autopsy material. Acta Orthop Scand 54:819–825Google Scholar
  9. 9.
    Hvid I, Jensen J (1984) Cancellous bone strength at the proximal human tibia. Eng Med 13:21–25Google Scholar
  10. 10.
    Hvid I, Andersen K, Olesen S (1984) Cancellous bone strength measurements with the osteopenetrometer. Eng Med 13:73–78Google Scholar
  11. 11.
    Hvid I, Jensen NC, Bünger C, Sølund K, Djurhuus JC (1985) Bone mineral assay: its relation to the mechanical strength of cancellous bone. Eng Med 14:79–83Google Scholar
  12. 12.
    Ikuhi D (1977) Study on trabecular architecture of distal end of the femur. J Jpn Orthop Ass 51:1–134Google Scholar
  13. 13.
    Sedlin ED, Hirsch C (1966) Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop Scand 37:29–48Google Scholar
  14. 14.
    Sneppen O, Christensen P, Larsen H, Vang PS (1981) Mechanical testing of trabecular bone in knee replacement. Development of an osteopenetrometer. Int Orthop 5:251–256Google Scholar
  15. 15.
    Williams JL, Lewis JL (1982) Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. J Biomech Eng 104:50–56Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • I. Hvid
    • 1
  1. 1.Biomechanics Laboratory, Orthopaedic HospitalUniversity of ÅrhusÅrhus NDenmark

Personalised recommendations