Current Genetics

, Volume 9, Issue 8, pp 661–670 | Cite as

Identification and characterization of mitochondrial translation products in various yeasts and inPrototheca zopfii

  • M. Winnann Ewing
  • Donald W. Deters


Mitochondrial genomes of different eucaryotes are not all alike. We have examined mitochondrial translation products in a number of yeasts (Candida krusei, Hansenula saturnus, Rhodotorula glutinis, Rhodotorula rubra, Torulopsis glabrata andSaccharomyces cerevisiae) and in Prototheca zopfii, a colorless alga, in order to determine whether certain proteins are invariably synthesized within mitochondria, how different these proteins are, and what additional proteins, if any, might be synthesized by diverse mitochondria. Using a variety of techniques and criteria, including immunological analysis and peptide mapping, we show that all the yeasts studied, and probablyP. zopfii as well, make versions of the 3 large subunits of cytochrome c oxidase. Not all of these oxidase subunits are equally closely related to their counterparts inS. cerevisiae, however. Mitochondria of some of the yeasts studied do not make, or make only small amounts of, a counterpart to Varl, a major mitochondrially made protein inS. cerevisiae. Mitochondria ofP. zopfii possibly do not make an apocytochrome b.T. glabrata, H. saturnus and the two Rhodotorula species each make one or more proteins whose relationship, if any, to mitochondrial translation products ofS. cerevisiae is not apparent. These results provide new information about mitochondrial diversity. Whereas mitochondria of all the organisms that we have studied devote the major part of their synthetic effort to making the three large subunits of cytochrome c oxidase, and probably make certain other proteins in common, they do not all synthesize a completely identical set of proteins.

Key words

Mitochondrial protein synthesis Yeast mitochondria Cytochrome oxidase Prothotheca zopfii 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahearn DG (1978) Annu Rev Microbiol 32:59–68Google Scholar
  2. Ainley M (1984) PhD dissertation, University of Texas Health Science Center, DallasGoogle Scholar
  3. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Nature (London) 290:457–465Google Scholar
  4. Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) J Mol Biol 156:683–717Google Scholar
  5. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Cell 26:167–180Google Scholar
  6. Borst P, Grivell LA (1978) Cell 15:705–723Google Scholar
  7. Brown TA, Davies RW, Ray JA, Waring RB, Scazzocchio C (1983) EMBO J 2:427–435Google Scholar
  8. Burke JM, RajBhandary UL (1982) Cell 31:509–520Google Scholar
  9. Cabral F, Solioz M, Deters DW, Rudin Y, Schatz G, Clavilier L, Groudinsky 0, Slonimski P (1977) Effects of mitochondrial mutations on cytochrome c oxidase in yeast. In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (eds) Mitochondria 1977: genetics and biogenesis of mitochondria. de Gruyter, Berlin, pp 401–413Google Scholar
  10. Cabral F, Solioz M, Rudin Y, Schatz G, Clavilier L, Slonimski PP (1978) J Biol Chem 253:297–304Google Scholar
  11. Claisse ML, Spyridakis A, Wambier-Kluppel ML, Pajot P, Slonimski P (1978) Mosaic organization and expression of the mitochondrial DNA region controlling cytochrome c reductase and oxidase. II. Analysis of proteins translated from the box region. In: Bacila M, Horecker BL, Stoppani AOM (eds) Biochemistry and genetics of yeasts. Pure and applied aspects. Academic Press, New York London, pp 369–390Google Scholar
  12. Clark-Walker GD, Sriprakash KS (1983) EMBO J 2:1465–1472Google Scholar
  13. Cleveland DW, Fischer SG, Kirschner MW, Laemmli UK (1977) J Biol Chem 252:1102–1106Google Scholar
  14. Deters DW, Racker E, Nelson N, Nelson H (1975) J Biol Chem 250:1041–1047Google Scholar
  15. Deters D, Muller U, Homberger H (1976) Anal Biochem 70:263–267Google Scholar
  16. Douglas MG, Butow RA (1976) Proc Natl Acad Sci USA 73:1083–1086Google Scholar
  17. Douglas M, Finkelstein D, Butow RA (1979) Methods Enzymol 56:58–66Google Scholar
  18. Dujon B (1981) Mitochondrial genetics and functions. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast saccharomyces, life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 505–635Google Scholar
  19. Gortz G, Feldman H (1982) Curr Genet 5:221–225Google Scholar
  20. Groot GSP, Mason TL, van Harten-Loosbroek N (1979) Mol Gen Genet 174:339–342Google Scholar
  21. Hudspeth MES, Ainley WM, Shumard DS, Butow RA, Grossman LI (1982) Cell 30:617–626Google Scholar
  22. La Polla RJ, Lambowitz AM (1984) J Biol Chem 256:7064–7067Google Scholar
  23. Lawson JE, Deters DW (1985a). Curr Genet 9:345–350Google Scholar
  24. Lawson JE, Deters DW (1985b) Curr Genet 9:351–360Google Scholar
  25. Macino G (1980) J Biol Chem 255:10563–10565Google Scholar
  26. Macino G, Scazzocchio C, Waring RB, Berks MM, Davies RW (1980) Nature (London) 288:404–406Google Scholar
  27. Mason T, Poyton RO, Wharton DC, Schatz G (1973) J Biol Chem 248:1346–1354Google Scholar
  28. Nelson N, Deters DW, Nelson H, Racket E (1973) J Biol Chem 248:2049–2055Google Scholar
  29. Schatz G, Mason T (1974) Annu Rev Biochem 43:51–87Google Scholar
  30. Schatz G, Butow RA (1983) Cell 32:316–318Google Scholar
  31. Terpstra P, Zanders E, Butow RA (1979) J Biol Chem 254:12653–12661Google Scholar
  32. Terpstra P, Butow RA (1979) J Biol Chem 254:12662–12669Google Scholar
  33. Tzagoloff A (1982) Mitochondria. Plenum Press, New YorkGoogle Scholar
  34. Wilkie D, Evans IH, Egilsson V, Diala ES, Collier D (1983) Int Rev Cytol, Suppl 15:157–189Google Scholar
  35. Yin S, Burke J, Chang DD, Browning KS, Heckman JE, Alzner-Deweerd B, Potter MJ, RajBhandary UL (1982) Neurospora crassa mitochondrial tRNAs and rRNAs: structure, gene organization, and DNA sequences. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 361–373Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • M. Winnann Ewing
    • 1
  • Donald W. Deters
    • 1
  1. 1.Department of MicrobiologyUniversity of Texas at AustinAustinUSA

Personalised recommendations