Advertisement

Archives of Microbiology

, Volume 104, Issue 1, pp 77–82 | Cite as

Formation of reaction centers and light-harvesting bacteriochlorophyll-protein complexes in Rhodopseudomonas capsulata

  • Karl-Friedrich Nieth
  • Gerhart Drews
Article

Abstract

Formation of the photosynthetic apparatus was induced in aerobically grown dark cultures of Rhodopseudomonas capsulata by lowering of the oxygen tension.

Besides the wild type strain the carotenoid-less mutant strain A1a+ was investigated. Both strains exhibited initially a decrease of the molar ratio of total bacteriochlorophyll (Bchl) to reaction center (RC) Bchl, followed by an increase. Synthesis of RC-Bchl preceded the synthesis of light-harvesting (LH) Bchl.

Activities of photophosphorylation in membrane preparations, isolated from cultures after different periods of incubation at low aeration, decreased on the basis of total Bchl from about 9 to 2 μmole ATP/μmole total Bchl·min, whereas the rate on the basis of RC-Bchl remained constant (about 500 μmole ATP/μmole RC-Bchl·min).

Under the same conditions the membrane proteins were labelled with U−14C-protein hydrolysate. Corresponding to RC-Bchl the synthesis of RC-proteins dominated during the first 30 min of incubation at pO2 below 3 mmHg. After 45–60 min of membrane formation at low aeration the synthesis of LH-complex proteins exceeded the synthesis of RC proteins. The correlations between protein and Bchl synthesis in the sequential formation of RC- and LH-complexes are discussed.

Key words

Membrane Differentiation Reaction Center Bacteriochlorophyll Antenna-Pigment Complex Bacteriochlorophyll-Protein Association Photosynthetic Bacteria 

Abbreviations

Bchl

bacteriochlorophyll

c.p.m.

counts per minute

LH

light harvesting or antenna

R.

Rhodopseudomonas

RC

reaction center

SDS

sodium dodecyl sulfate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aagard, J., Sistrom, W. R.: Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem. Photobiol. 55, 209–225 (1972)Google Scholar
  2. Breton, J.: The state of chlorophyll and carotenoid in vivo. II. A linear dichroism study of pigment orientation in photosynthetic bacteria. Biochem. biophys. Res. Commun. 59, 1011–1017 (1974)Google Scholar
  3. Clayton, R. K.: Toward the isolation of a photochemical reaction center in Rhodopseudomonas spheroides. Biochim. biophys. Acta (Amst.) 75, 312–323 (1963)Google Scholar
  4. Clayton, R. K.: Spectroscopic analysis of bacteriochlorophylls in vitro and in vivo. Photochem. Photobiol. 5, 669–677 (1966)Google Scholar
  5. Clayton, R. K., Clayton, B. J.: Relations between pigments and proteins in the photosynthetic membrane of R. spheroides. Biochim. biophys. Acta (Amst.) 283, 492–504 (1972)Google Scholar
  6. Clayton, R. K., Haselkorn, R.: Protein components of bacterial photosynthetic membranes. J. molec. Biol. 68, 97–105 (1972)Google Scholar
  7. Cusanovich, M. A., Kamen, M. D.: Light induced electron transport in Chromatium strain D. III. Photophosphorylation by Chromatium chromatophores. Biochim. biophys. Acta (Amst.) 153, 418–426 (1968)Google Scholar
  8. Dierstein, R.: Zur Regulation der Ausbildung des Photosyntheseapparates von R. capsulata in kontinuierlicher Kultur. Dissertation, Universität Freiburg (1975)Google Scholar
  9. Drews, G.: Die Isolierung schwefelfreier Purpurbakterien. Zbl. Bakt., I. Abt., Orig., Suppl. 1, 170–178 (1965)Google Scholar
  10. Drews, G.: Composition of a protochlorophyll-protopheophytin complex excreted by a mutant strain of R. capsulata. Arch. Microbiol. 100, 397–407 (1974)Google Scholar
  11. Drews, G., Biedermann, M., Oelze, J.: Investigations of the thylakoid morphogenesis in R. rubrum. Progr. Photosynth. Res. 1, 204–208 (1969a)Google Scholar
  12. Drews, G., Dierstein, R., Nieth, K. F.: The formation of the photosynthetic apparatus in cells of Rhodopseudomonas capsulata. Proc. 3. Int. Congr. Photosynthesis Rehovot, M. Avron, ed., pp. 2139–2146. Amsterdam: Elsevier 1974Google Scholar
  13. Drews, G., Lampe, H.-H., Ladwig, R.: Die Entwicklung des Photosyntheseapparates in Dunkelkulturen von R. capsulata. Arch. Mikrobiol. 65, 12–28 (1969b)Google Scholar
  14. Drews, G., Leutiger, I., Ladwig, R.: Production of protochlorophyll, protopheophytin, and bacteriochlorophyll by R. capsulata. Arch. Mikrobiol. 76, 349–363 (1971)Google Scholar
  15. Evans, E. H., Crofts, A. R.: A thermodynamic characterisation of the cytochromes of chromatophores from R. capsulata. Biochim. biophys. Acta (Amst.) 357, 78–88 (1974a)Google Scholar
  16. Evans, E. H., Crofts, A. R.: In situ characterisation of photosynthetic electron transport in R. capsulata. Biochim. biophys. Acta (Amst.) 357, 89–102 (1974b)Google Scholar
  17. Feher, G.: Some chemical and physical properties of a bacterial reaction center and its primary photochemical reactions. Photochem. Photobiol. 14, 373–387 (1971)Google Scholar
  18. Fraker, P. J., Kaplan, S.: Isolation and characterization of a bacteriochlorophyll containing protein from Rhodopseudomonas spheroides. J. biol. Chem. 247, 2732–2737 (1972)Google Scholar
  19. Garcia, A., Drews, G., Kamen, M. D.: On reconstitution of bacterial photophosphorylation in vitro. Proc. nat. Acad. Sci. (Wash.) 71, 4213–4216 (1974)Google Scholar
  20. Garcia, A., Drews, G., Kamen, M. D.: Electron transport in an in vitro-reconstituted bacterial photophosphorylating system. Biochim. biophys. Acta (Amst.) 387, 129–134 (1975)Google Scholar
  21. Goedheer, J. C.: Fluorescence polarization and pigment orientation in photosynthetic bacteria. Biochim. biophys. Acta (Amst.) 292, 665–676 (1973)Google Scholar
  22. Huang, J. W., Kaplan, S.: Membrane proteins of Rhodopseudomonas spheroides. Biochim. biophys. Acta (Amst.) 307, 332–342 (1973)Google Scholar
  23. Jolchine, G., Reiss-Husson, F., Kamen, M. D.: Active center fractions from Rhodopseudomonas spheroides strain Y. Proc. nat. Acad. Sci. (Wash.) 64, 650–653 (1969)Google Scholar
  24. Keister, D. L., Minton, N. J.: Interaction of the photochemical and respiratory systems of R. rubrum. Progr. Photosynth. Res. 3, 1299–1305 (1969)Google Scholar
  25. King, M. T., Drews, G.: The respiratory electron transport system of heterotrophically-grown Rhodopseudomonas palustris. Arch. Microbiol. 102, 219–231 (1975)Google Scholar
  26. Klemme, J. H., Schlegel, H. G.: Untersuchungen zum Cytochrom-Oxydase-System aus anaerob im Licht und aerob im Dunkeln gewachsenen Zellen von Rhodopseudomonas capsulata. Arch. Mikrobiol. 68, 326–354 (1969)Google Scholar
  27. Kosakowski, M. H., Kaplan, S.: Topology and growth of the intracytoplasmic membrane system of R. spheroides: protein, chlorophyll and phospholipid insertion into steady-state anaerobic cells. J. Bact. 118, 1144–1157 (1974)Google Scholar
  28. Laemmli, U. K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 227, 690–685 (1970)Google Scholar
  29. Lampe, H.-H., Drews, G.: Die Differenzierung des Membransystems von Rhodopseudomonas capsulata hinsichtlich seiner photosynthetischen und respiratorischen Funktionen. Arch. Mikrobiol. 84, 1–19 (1972)Google Scholar
  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the folin phenol reagent. J. biol. Chem. 93, 265–275 (1951)Google Scholar
  31. Nieth, K. F., Drews, G.: The protein patterns of intracytoplasmic membranes and reaction center particles isolated from Rhodopseudomonas capsulata. Arch. Microbiol. 96, 161–174 (1974)Google Scholar
  32. Oelze, J., Drews, G.: Variations of NADH-oxidase activity and bacteriochlorophyll contents during membrane differentiation in R. rubrum. Biochim. biophys. Acta (Amst.) 219, 131–140 (1970)Google Scholar
  33. Oelze, J., Drews, G.: Membranes of photosynthetic bacteria. Biochim. biophys. Acta (Amst.) 265, 209–239 (1972)Google Scholar
  34. Oelze, J., Golecki, J.: Properties of reaction center depleted membranes of Rhodospirillum rubrum. Arch. Microbiol. 102, 59–64 (1975)Google Scholar
  35. Okamura, M. Y., Steiner, L. A., Feher, G.: Characterization of reaction centers from photosynthetic bacteria. I. Subunit structure of the protein mediating the primary photochemistry in Rhodopseudomonas spheroides R-26. Biochemistry 13, 1394–1403 (1974)Google Scholar
  36. Otten, H. A.: Absorption changes in the reaction center of photosynthetic bacteria and π-electron calculations on bacteriochlorophyll. Photochem. Photobiol. 14, 589–596 (1971)Google Scholar
  37. Prince, R. C., Crofts, A. R.: Photochemical reaction centres from Rhodopseudomonas capsulata A1apho+. FEBS Letters 35, 213–216 (1973)Google Scholar
  38. Reed, D. W., Raveed, D., Israel, H. W.: Functional bacteriochlorophyll-protein complexes from chromatophores of Rhodopseudomonas spheroides strain R-26. Biochim. biophys. Acta (Amst.) 223, 281–291 (1970)Google Scholar
  39. Schwenker, U., Gingras, G.: A carotenoprotein from chromatophores of Rhodospirillum rubrum. Biochem. biophys. Res. Commun. 51, 94–99 (1973)Google Scholar
  40. Schwenker, U., St-Onge, M., Gingras, G.: Chemical and physical properties of a carotenoprotein from Rhodospirillum rubrum. Biochim. biophys. Acta (Amst.) 351, 246–260 (1974)Google Scholar
  41. Sistrom, W. R.: The kinetics of the synthesis of photopigments in R. spheroides. J. gen. Microbiol. 28, 607–616 (1962)Google Scholar
  42. Smith, J. H. C., Benitez, A.: Chlorophylls. In: Moderne Methoden der Pflanzenanalyse, Vol. IV, pp. 142–196, K. Paech, M. V. Tracey, eds. Berlin-Heidelberg-New York: Springer 1955Google Scholar
  43. Takemoto, J.: Kinetics of photosynthetic membrane protein assembly in R. spheroides. Arch. Biochem. Biophys. 163, 515–520 (1974)Google Scholar
  44. Takemoto, J., Lascelles, J.: Function of membrane proteins coupled to bacteriochlorophyll synthesis. Arch. Biochem. Biophys. 163, 507–514 (1974)Google Scholar
  45. Wang, R. T., Clayton, R. K.: Isolation of photochemical reaction centers from a carotenoidless mutant of Rhodospirillum rubrum. Photochem. Photobiol. 17, 57–61 (1973)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Karl-Friedrich Nieth
    • 1
  • Gerhart Drews
    • 1
  1. 1.Lehrstuhl für MikrobiologieInstitut für Biologie II der UniversitätFreiburg i. B.

Personalised recommendations