Archives of Microbiology

, Volume 105, Issue 1, pp 17–20 | Cite as

Oxygen pressure, fatty acid composition and ergosterol level in Rhodotorula gracilis

  • M. C. Cocucci
  • G. Belloni
  • L. Gianani
Article

Abstract

Cells of Rhodotorula gracilis grown for 6 hrs at 2 mm Hg O2 pressure when compared with cells grown for 6 hrs at 140 mm Hg, show: a) a large decrease in the level of ergosterol, b) a significant increase in the level of oleic acid and a decrease in the levels of linoleic and linolenic acids, both in the fatty acid fraction of the phospholipids and in the free fatty acids and neutral fat fractions. The results suggest that the dehydrogenation of oleic acid to linoleic acid is preferentially inhibited at low O2 pressure. The possibility is considered that these changes of lipid metabolism might be causally related with decrease of the growth rate observed at low O2 pressure.

Key words

Rhodotorula gracilis pO2 Fatty Acid Ergosterol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrink, H. J.: The microtitration of total fatty acids of serum with notes on the estimation of triglycerides. J. Lipid Res. 1, 53–59 (1959)Google Scholar
  2. Barber, E. D., Lands, W. E. M.: Quantitative measurement of the effectiveness of unsaturated fatty acids required for the growth of Saccharomyces cerevisiae. J. Bact. 115, 543–551 (1973)Google Scholar
  3. Beffagna, N., Cocucci, S., Cocucci, M., Cocucci, M. C.: Change of the main cells constituents during the growth of Rhodotorula gracilis cultured in liquid medium. Ann. Microbiol. 22, 119–130 (1972)Google Scholar
  4. Brown, C. M., Rose, A. H.: Fatty acid composition of Candida utilis as affected by growth, temperature and dissolved oxygen tension. J. Bact. 99, 371–378 (1969)Google Scholar
  5. Cocucci, M.: The effects of complete anaerobiosis on the metabolism of Rhodotorula gracilis. Ann. Micr. 22, 63–70 (1972)Google Scholar
  6. Cocucci, M., Cocucci, M. C., Marré, E.: Growth inhibition without ATP decrease in Rhodotorula gracilis cultured under oxygen pressure. Plant Science Letters 1, 425–431 (1973)Google Scholar
  7. Cocucci, M., Rossi, G., Vandoni, T.: Adaptation of the mitochondrial systems of Rhodotorula gracilis to low oxygen pressure. Cell Diff. (in press, 1975)Google Scholar
  8. Fujimori, A., Hosoya, N.: Phospholipids in human young placenta. J Biochem. 59, 332–339 (1966)Google Scholar
  9. Gornall, A. G., Bardawill, C. J., David, M. M.: Determination of serum proteins by means of the biuret method. J. Biol. Chem. 177, 751–766 (1949)Google Scholar
  10. Jollow, D., Kellerman, G. M., Linnane, A. W.: The biogenesis of mitochondria. III. The lipid composition of aerobically and anaerobically grown Saccharomyces cerevisiae as related to the membrane systems of the cells. J. biol. Chem. 37, 267–279 (1968)Google Scholar
  11. McMurrough, I., Rose, A. H.: Effects of temperature on the fatty acid composition of Candida utilis. J. Bact. 107, 753–758 (1971)Google Scholar
  12. Morpurgo, G., Serlupi-Crescenzi, G., Tecce, G., Valente, P., Venettacci, D.: Influence of ergosterol on the physiology and the ultrastructure of Saccharomyces cerevisiae. Nature (Lond.) 29, 897–899 (1964)Google Scholar
  13. Pedersen, T. A.: Lipid formation in Cryptococcus terricolus. III. Extraction and purification of lipids. Acta chem. scand. 16, 374–382 (1962)Google Scholar
  14. Roger, R., Ma, T. S.: Diazomethan as reagent for microsynthesis. Microchem. J. 1, 245–247 (1957)Google Scholar
  15. Rogers, P. J., Stewart, P. R.: Mitochondrial and peroxisomal contributions to the energy metabolism of Saccharomyces cerevisiae in continuous culture. J. gen. Microbiol. 79, 205–217 (1973)Google Scholar
  16. Rottem, S., Cirillo, V. P., de Kruyff, B., Shinitzky, M., Razin, S.: Correlation of enzymic and transport activities with physical state of lipids in membranes of Mycoplasma mycoides var. capri adapted to grow with low cholesterol concentrations. Biochim. biophys. Acta (Amst.) 323, 509–519 (1973a)Google Scholar
  17. Rottem, S., Yoshou, J., Ne'eman, Z., Razin, S.: Cholesterol in Mycoplasma membranes. Composition, ultrastructure and biological properties of membranes from Mycoplasma mycoides var. capri cells adapted to grow with low cholesterol concentration. Biochim. biophys. Acta (Amst.) 323, 495–508 (1973b)Google Scholar
  18. Siekevitz, P.: Uptake of radioactive alanine in vitro into proteins of rat liver fractions. J. biol. Chem. 195, 459–595 (1962)Google Scholar
  19. Stadtman, T. C.: Preparation and assay of cholesterol and ergosterol. In: Methods in enzymology, Vol. III, S. P. Colowick, N. O. Kaplan, eds., p. 392. New York: Academic Press 1957Google Scholar
  20. Vignais, P. M., Nachbaur, J., Het, J., Vignais, V.: Studies in the phospholipids of yeast mitochondria. Biochem. J. 116, 42 P (1970)Google Scholar
  21. Zlatoust, M., Balabanov, A.: Effects of steroid compounds on the growth of Saccharomyces cerevisiae culture. Isv. Akad. Nauk. Mold. SSR, Ser. Biol. Khim. Nauk. 6, 88–94 (1971)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • M. C. Cocucci
    • 1
  • G. Belloni
    • 1
  • L. Gianani
    • 1
  1. 1.Centro di Studio del C.N.R. per la Biologia Cellulare e Moleculare delle PianteIstituto di Scienze Botaniche dell'UniversitàMilano

Personalised recommendations