Advertisement

Archives of Microbiology

, Volume 142, Issue 2, pp 103–108 | Cite as

Evidence for adenylylation/deadenylylation control of the glutamine synthetases of Rhodospirillum tenue and Rhodocyclus purpureus

  • Richard A. Masters
  • Michael T. Madigan
Original Papers

Abstract

The phylogenetically related phototrophic bacteria Rhodospirillum tenue and Rhodocyclus purpureus modulate activity of their glutamine synthetases by adenylylation/deadenylylation. Evidence for covalent modification includes the inhibitory effect of Mg2+ on the activity of glutamine synthetase extracted from cells of either species grown on excess ammonia, and the lack of Mg2+ inhibition of activity of the enzyme isolated from N2-(R. tenue) or glutamine (R. purpureus)-grown cells. In addition, snake venom phosphodiesterase treatment of glutamine synthetase from either species grown on excess ammonia relieved Mg2+ inhibition of the enzyme (as measured via the γ-glutamyl transferase assay), and changed the cation specificity from Mn2+ to Mg2+ (in the biosynthetic assay).

Key words

Phototrophic bacteria Rhodospirillaceae Glutamine synthetase Nitrogen metabolism Nitrogen fixation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alef K, Burkardt H-J, Horstman H-J, Zumft WG (1981) Molecular characterization of glutamine synthetase from the nitrogenfixing phototrophic bacterium Rhodopseudomonas palustris. Z Naturforsch 36c:246–254Google Scholar
  2. Bender RA, Janssen KA, Resnick AD, Blumberg M, Foor F, Magasanik B (1977) Biochemical parameters of glutamine synthetase from Klebsiella pneumoniae. J Bacteriol 129:1001–1009Google Scholar
  3. Chock PB, Rhee SG, Stadtman ER (1980) Interconvertible enzyme cascades in cellular regulation. Ann Rev Biochem 49:813–843Google Scholar
  4. Davies W, Ormerod JG (1982) Glutamine synthetase in Chlorobium limicola and Rhodospirillum rubrum. FEMS Lett 13:75–78Google Scholar
  5. Dickerson RE (1980) Evolution and gene transfer in purple photosynthetic bacteria. Nature 283:210–212Google Scholar
  6. Engelhardt H, Klemme J-H (1982) In vivo control of glutamine synthetase in the facultative phototrophic bacterium Rhodopseudomonas sphaeroides. Z Naturforsch 36c:407–410Google Scholar
  7. Engelhardt H, Klemme J-H (1982) Purification and structural properties of adenylylated glutamine synthetase from Rhodopseudomonas sphaeroides. Arch Microbiol 133:202–205Google Scholar
  8. Falk G, Johansson BoC, Nordlund S (1982) The role of glutamine synthetase in the regulation of nitrogenase activity (“switch off effect”) in Rhodospirillum rubrum. Arch Microbiol 132:251–253Google Scholar
  9. Gibson J, Stackebrandt E, Zablen LB, Gupta R, Woese CR (1979) A phylogenetic analysis of the purple photosynthetic bacteria. Curr Microbiol 3:59–64Google Scholar
  10. Johansson BoC, Gest H (1977) Adenylylation/deadenylylation control of the glutamine synthetase of Rhodopseudomonas capsulata. Eur J Biochem 81:365–371Google Scholar
  11. Kaulen H, Klemme J-H (1983) No evidence of covalent modification of glutamine synthetase in the thermophilic phototrophic bacterium Chloroflexus aurantiacus. FEMS Lett 20:75–79Google Scholar
  12. Khanna S, Nicholas DJD (1983a) Adenylylation of glutamine synthetase in Chlorobium vibrioforme f. thiosulfatophilum. FEMS Lett 18:173–175Google Scholar
  13. Khanna S, Nicholas DJD (1983b) Some properties of glutamine synthetase and glutamate synthase from Chlorobium vibrioforme f. thiosulfatophilum. Arch Microbiol 134:98–103Google Scholar
  14. Kingdon HS, Stadtman ER (1967) Regulation of glutamine synthetase. X. Effect of growth conditions on the susceptibility of Escherichia coli glutamine synthetase to feedback inhibition. J Bacteriol 94:949–957Google Scholar
  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  16. Madigan M, Cox SS, Stegeman RA (1984) Nitrogen fixation and nitrogenase activities in members of the family Rhodospirillaceae. J Bacteriol 157:73–78Google Scholar
  17. Magasanik B (1982) Control of nitrogen assimilation in bacteria. Ann Rev Genetics 16:135–168Google Scholar
  18. Masters RA, Madigan M (1983) Nitrogen metabolism in the phototrophic bacteria Rhodocyclus purpureus and Rhodospirillum tenue. J Bacteriol 155:222–227Google Scholar
  19. Senior PJ (1975) Regulation of nitrogen metabolism in Escherichia coli and Klebsiella aerogenes: Studies with the continuous culture technique. J Bacteriol 123:407–418Google Scholar
  20. Stacey G, van Baalen C, Tabita FR (1979) Nitrogen and ammonia assimilation in the cyanobacteria: Regulation of glutamine synthetase. Arch Biochem Biophys 194:457–467Google Scholar
  21. Stadtman ER, Ginsberg A, Ciardi JE, Yeh J, Hennig SB, Shapiro BM (1970) Multiple molecular forms of glutamine synthetase produced by enzyme catalyzed adenylylation and deadenylylation reactions. Adv Enzymol Regul 8:99–118Google Scholar
  22. Streicher SL, Tyler B (1981) Regulation of glutamine synthetase activity by adenylylation in the Gram-positive bacterium, Streptomyces cattleya. Proc Natl Acad Sci USA 78:229–233Google Scholar
  23. Tronick SR, Ciardi JE, Stadtman ER (1973) Comparative biochemical and immunological studies of bacterial glutamine synthetase. J Bacteriol 115:858–868Google Scholar
  24. Tyler B (1978) Regulation of the assimilation of nitrogen compounds. Ann Rev Biochem 47:1127–1162Google Scholar
  25. Wall JD, Gest H (1979) Derepression of nitrogenase activity in glutamine auxotrophs of Rhodopseudomonas capsulata. J Bacteriol 137:1459–1463Google Scholar
  26. Weckesser J, Mayer H, Metz E, Biebl H (1983) Lipopolysaccharide of Rhodocyclus purpureus: Taxonomic implication. Int J Syst Bacteriol 33:53–56Google Scholar
  27. Yoch DC (1980) Regulation of nitrogenase A and R concentrations in Rhodopseudomonas capsulata by glutamine synthetase. Biochem J 187:273–276Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Richard A. Masters
    • 1
  • Michael T. Madigan
    • 1
  1. 1.Department of MicrobiologySouthern Illinois UniversityCarbondaleUSA

Personalised recommendations